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ABSTRACT

Earth-observing satellites provide a method to measure precipitation from space with good spatial and

temporal coverage, but these estimates have a high degree of uncertainty associated with them. Un-

derstanding and quantifying the uncertainty of the satellite estimates can be very beneficial when using

these precipitation products in hydrological applications. In this study, the generalized normal distribution

(GND) model is used to model the uncertainty of the Precipitation Estimation from Remotely Sensed

Information Using Artificial Neural Networks (PERSIANN) precipitation product. The stage IV Multi-

sensor Precipitation Estimator (radar-based product) was used as the reference measurement. The dis-

tribution parameters of the GND model are further extended across various rainfall rates and spatial and

temporal resolutions. The GND model is calibrated for an area of 58 3 58 over the southeastern United

States for both summer and winter seasons from 2004 to 2009. TheGNDmodel is used to represent the joint

probability distribution of satellite (PERSIANN) and radar (stage IV) rainfall. The method is further in-

vestigated for the period of 2006–08 over the Illinois watershed south of Siloam Springs, Arkansas. Results

show that, using the proposed method, the estimation of the precipitation is improved in terms of percent

bias and root-mean-square error.

1. Introduction

Precipitation is one of the most important compo-

nents of water-budget analyses and plays a key role in

connecting water and energy cycles. Too much or too

little precipitation can lead to potential disasters, such

as floods and droughts. Therefore, providing reliable

measurements of precipitation is a crucial task for a

safer environment. This work focuses specifically on the

liquid form of precipitation (rainfall).

For precipitation measurement, rain gauges are the

most accurate instrument at point scale, but a lack of

a dense network of gauges, especially in remote areas,

prevents obtaining the spatial heterogeneity of pre-

cipitation patterns necessary for most applications. The

use of satellite instruments becomes feasible for pre-

cipitation estimation at fine spatial and temporal scales.

Unlike gauges and radars, satellite measurements can

overcome limitations from ground sensors in terms of

coverage and operation, but the uncertainty of estimates

can be high and should be evaluated. Even satellites do

not provide full continuous images at all times; there-

fore, the average of limited image samples in time

also contributes to the error of the final precipitation

product. In addition, the uncertainty of data is de-

pendent on the spatial scale and time accumulation of

the estimate. In general, the products at finer spatial

and temporal scales are associated with higher un-

certainty than products at coarser spatial and temporal

scales (Steiner 1996).

Further understanding of the uncertainty of satellite

estimates is important to hydrologists and operational

meteorologists who use satellite precipitation products

for their water resources management and applications,

such as rainfall–runoff modeling for their river flow

forecasting.

A number of high-resolution, satellite-based precipita-

tion estimates (HRSPEs) are available in near–real time

(e.g., Hsu et al. 1997; Huffman et al. 2001; Sorooshian

et al. 2000; Xie et al. 2003; Joyce et al. 2004). For better

use of those HRSPEs, the uncertainty associated with

these products at different scales should be quantified. A

number of studies related to precipitation error analysis
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were proposed (i.e., Krajewski et al. 1991, 2000; Steiner

1996; Steiner et al. 1999; Li et al. 1998; Huffman 1997;

Anagnostou et al. 1999; Hossain and Anagnostou 2004;

Villarini and Krajewski 2007, 2008, 2009).

Assuming that the true measurement (RAT , rainfall

for temporal accumulation of T and spatial resolu-

tion of A), is not available, reference data (Rref
AT) are

frequently used for the evaluation of model- or

satellite-based estimates. A reference error can be

assigned as

(R̂AT 2Rref
AT)5 (R̂AT 2RAT)2 (Rref

AT 2RAT)

5 («2 «ref) , (1)

in which Rref
AT is the available reference, such as radar

data, and R̂AT is the satellite estimate. The quantity «ref

is the error of the reference, and « is the error of the

product that is not known because the true value is never

available. The variance of estimate error (to the refer-

ence data) can be presented as

Var(R̂AT 2Rref
AT)5Var(R̂AT 2RAT)1Var(Rref

AT 2RAT)

2 2Cov[(R̂AT 2RAT), (R
ref
AT 2RAT)]

5Var(«)1Var(«ref)2 2Cov(«, «ref) . (2)

If the two (reference data and satellite estimates) are

uncorrelated, the covariance of their errors is zero.

Equation (2) can be presented as

Var(R̂AT 2Rref
AT)5Var(«)1Var(«ref) . (3)

If the error variance of reference source [Var(«ref)] is

provided, Var(R̂AT 2Rref
AT) can be calculated based on

the reference data and satellite estimate.

Ciach and Krajewski (1999) and Anagnostou et al.

(1999) attempted to separate the error into algorithm

error and sampling error. Sampling error is the error

associated with infrequent passing of satellites over a

region that causes the product to be a temporal average

that is slightly different from its true value. Laughlin

(1981) showed that the sampling error is a mean-square

error of the mean value of the precipitation:

s2
A 5Var[RA(t)] , (4)

where RA(t) is the variance of the area-averaged rain

rate. He studied the Global Atmospheric Research Pro-

gram (GARP) Atlantic Tropical Experiment (GATE)

dataset over the Atlantic Ocean for the summer of

1974. The sampling errors over the ocean, where there

is the least amount of in situ observations (no gauges

and radar data are available) as a reference for satellite

estimates, were estimated. Similar case studies also

have been done by other researchers (Seed and Austin

1990; Soman et al. 1995, 1996; Oki and Sumi 1994;

Weng et al. 1994).

Bell andKundu (2000) showed that the sampling error

is a function of mean monthly precipitation and also

depends on the sampling space and number of satellite

visits over a month. They proposed the following

equation to compute the sampling error:

ssamp

R
’ c(t)

�
r

R

a

A

1

S

�1/2

where c(t)5

�
12

2t

T/S

�
,

(5)

where ssamp is the sampling error, R is the mean rainfall

rate over area A, r is the mean rainfall rate during an

event over area a, S is the number of satellite visits, t is

the correlation time of the rainfall events, and T is the

length of the sample time. Additionally, there are some

studies like Kunsch (1989), who used the moving-block

bootstrapping, which is a nonparametric method and is

based on the sampling experiment. Steiner et al. (2003)

came up with the same relationship as in Bell and

Kundu (2000) for the data over the Rocky Mountains

by using the Laughlin (1981) formula and the resampling

method. Steiner et al. concluded that this uncertainty

is a statistical variable and should be defined in proba-

bilistic terms.

Gebremichael and Krajewski (2004) compared para-

metric and nonparametric error estimation. They used

the Laughlin (1981) formula for the parametric and

moving-block bootstrapping methods for the non-

parametric approach. Gebremichael andKrajewski (2005)

further defined satellite precipitation sampling error as

asymmetric distribution, such as a shifted gamma and a

shifted Weibull. They found out that, for large sampling

intervals such as 12 or 24h, the conditional distribution of

error to rainfall rate is shifted Weibull; for smaller sam-

pling intervals, such as 3 or 6h, the logistic distribution

works better.

Steiner et al. (2003) proposed a relationship between

radar rainfall estimates and several other factors; a sim-

ilar relationship was used by Hong et al. (2006) to

quantify the variance of the measurement error as a

function of area coverage, time integration, sampling
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frequency, and space–time-average rainfall rate. Several

studies on the impact of precipitation uncertainty on

flood prediction have been performed (Hossain and

Anagnostou 2004). In those publications, the effect of

passive microwave and infrared-based satellite product

error on flood prediction using a probabilistic error

model was demonstrated. InAghaKouchak et al. (2012),

the satellite precipitation error is divided into systematic

and random error, and their correlation to space and

time accumulation is presented.

There is significant interest in the evaluation of the

available satellite precipitation products. In a study by

Maggioni et al. (2014), the joint model of satellite versus

reference precipitation is divided into four regions of hit

(where both reference and satellite show precipitation),

miss (where reference shows precipitation but satellite

shows zero), false alarm (where satellite shows rainfall

but reference shows zero), and correct no precipitation

(where both show zero). They modeled the hit and

missed precipitation using a gamma function and used a

constant probability for correct no precipitation and

false alarms.

Generally speaking, in most of the previous studies,

the errors associated with satellite estimates are as-

sumed to beGaussian, where error variance is estimated

(e.g., Ciach and Krajewski 1999; Anagnostou et al.

1999). More recent studies (e.g., Gebremichael and

Krajewski 2005) demonstrated that the error distribu-

tion is significantly different fromGaussian distribution.

Those studies show that the error distribution is relevant

to the spatial and temporal resolution of estimates, and

the error of estimate is fitted by shifted gamma; shifted

Weibull; and shifted lognormal, logistic, and normal

distribution at various spatial and temporal scales.

In this study, a generalized distribution function is

introduced to fit the joint probability distribution of

satellite-based estimate and reference data. The pro-

posed function provides nonsymmetric probability

functions considering the bias and variance, as well as

higher-order moments of the uncertainty other than

only using the first (mean) and the second (standard var-

iation) moments (Ciach and Krajewski 1999; Anagnostou

et al. 1999). The parameters of this generalized statistical

distribution are functions of spatial and temporal reso-

lution and rainfall rate, which enables the user to have

a higher degree of moments in the uncertainty model

(to model the asymmetrical uncertainty data) without

having to choose from different distribution forms

(Gebremichael and Krajewski 2005). It is assumed that

the distribution parameters of the precipitation product

uncertainty can vary through rainfall rate and product

resolution in space and time, which are further fitted by

simple mathematical functions.

The scope of this manuscript is as follows. A gener-

alized probability model to describe the relationship

between the satellite measurements and reference data

is presented, and its properties are studied in section 2.

Section 3 presents the data, the calibration results, and

the parameter space, and section 4 contains the evalu-

ation of the model. In section 5, using the GND model,

the precipitation uncertainty in a case study over the

Illinois River basin is quantified and the method used is

evaluated using statistical analysis.

2. Methodology

In this study, a generalized probability distribution is

proposed to estimate the uncertainty of satellite pre-

cipitation estimates, which requires the estimation of the

distribution parameters.

After fitting the distribution on sample datasets at

particular temporal and spatial scales, the extension of

the distribution parameters with respect to various

spatiotemporal scale and rainfall rates is further in-

vestigated. This is achieved by estimating the distri-

bution parameters by aggregating the product at

various spatial and temporal scales. For instance, the

chosen data product [e.g., Precipitation Estimation

from Remotely Sensed Information Using Artificial

Neural Networks (PERSIANN)] is processed from

0.258 3 0.258 and hourly resolution to coarser spatial

resolutions, such as 0.58, 0.758, and 1.08, and 3-, 6-, 12-, and
24-h temporal resolutions.

a. Distribution selection

A number of different probability distributions can be

used as uncertainty models for a given variable. The most

commonly used one is the Gaussian distribution, which

is a symmetric function with two parameters (mean and

standard deviation); its skewness and kurtosis are zero.

However, precipitation data are not shaped symmetri-

cally; they are skewed with a larger occurrence of smaller

rainfall rates. There are different distributions that are

constructed by adding skewness to the normal distribu-

tion, for example, generalized normal distribution (GND),

lognormal distribution, skewed normal distribution, or

inverse normal distribution. There are certain character-

istics thatmake generalized normal distribution superior to

the others. The flexibility of the GND model makes it

possible to model the sharper peaks over the smaller

values of rainfall rates when the data are highly skewed

(Fig. 1). It can also model data with smaller peaks at larger

temporal and spatial accumulations. Furthermore, the

distribution is bounded from the left when the shape pa-

rameter is negative, which is the case for precipitation data

because they are skewed to the left:
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with a (positive and real) as scale, k (real) as shape, and z

(real) as the location parameters of the GND model and

F(y) as the standardnormalprobabilitydistribution function.

The different moments of the distribution can be de-

fined in terms of its parameters, as follows:

Mean5 z2
a

k
(ek

2/22 1), (8)

Variance5
a2

k2
ek

2

(ek
2

2 1), (9)

and

Skewness5
3ek

2

2 e3k
2

2 2

(ek
2 2 1)3/2

sign(k) . (10)

b. Parameter estimation

After choosing a general distribution model to fit to

the data, the maximum likelihood method is often the

logical choice for the estimation of the distribution pa-

rameters. However, this may not be the case for distri-

butions with a threshold that is a function of the

parameters, where the likelihood function may have

multiple modes or reach an infinite value when the es-

timated parameter values are no longer suitable for

data. In this work, we are fitting the distribution to the

data using least squares estimates of the cumulative

distribution functions (CDFs). The idea is that the

scatterplot of the empirical CDF of the data and the

CDF of the fitted distribution fall along the 1:1 line from

zero to one. To obtain this fitted distribution, we need to

minimize the objective function of the sum of the

squared differences between those two CDFs. To com-

pensate for the variance of the fitted functions, higher

FIG. 1. GND function type II by author and with different k values.
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weights are given to the tails and lower weights in

the center.

To find the parameters for each specific pair of spatial

and temporal resolutions, the data are divided into dif-

ferent bins (with the same bin size) with respect to their

corresponding satellite estimated rainfall rate, and a

distribution is fitted to each bin of data. For example, if

the resolution of interest is 18 3 18 and 3-h accumulated

rainfall and assuming the range of satellite estimates

from 0 to 50mmday21, data can be divided into 10

groups with an interval of 5mmday21. The model is

then fitted to the reference data in each bin, and its pa-

rameters are estimated (Fig. 2). By repeating the same

process for different spatial and temporal resolutions,

the distribution of parameters can be found as a function

of rainfall rate and spatial and temporal resolutions.

c. Distribution parameters at various spatiotemporal
scales

The three estimated parameters from each of the bins

are modeled as a function of the rainfall rate (mean bin

value) using simple functions. For the shift and shape

parameters, a linear function is used; for the scale

parameter, a power function is used:

z(Dt,Ds)5 aDt,Ds 3Rsat1 bDt,Ds , (11)

k(Dt,Ds)5 cDt,Ds 3Rsat1 dDt,Ds, and (12)

a(Dt,Ds)5 eDt,Ds 3Rsat
f
Dt,Ds , (13)

where Rsat (mmday21) is the mean value of the satellite

precipitation at each bin of the specific time accumulation

Dt (e.g., 3h) and spatial resolution Ds (e.g., 0.258 3 0.258
latitude–longitude scales). Using these three functions, at

each rainfall rate, the parameters of the uncertainty dis-

tribution are calculated and the distribution can be formed.

To expand this method for different spatial and tem-

poral resolutions, we need to aggregate our data into

those resolutions. The satellite precipitation product

and its corresponding radar data are accumulated into

lower temporal resolutions of 3-, 6-, 12-, and 24-h reso-

lution by obtaining the sum of the data for each interval.

For spatial resolutions, the average of the rainfall rates is

calculated from 0.258 3 0.258, 0.58 3 0.58, 0.758 3 0.758,
and 18 3 18. For each of the 16 different pairs of spatial

and temporal resolutions, the distribution is fitted to the

bins of the precipitation, and the distribution parameters

as a function of rainfall rate are modeled as z(Dt, Ds),
k(Dt, Ds), and a(Dt, Ds). The six parameters from Eqs.

(11)–(13) construct parameter space for different spatial

and temporal resolutions by fitting a one-degree poly-

nomial function to them. Having these planes available,

for each specific spatial and temporal resolution, we

have the equations for the three distribution parameters,

and we can use them to construct the uncertainty dis-

tribution at each rainfall rate.

3. Data selection, parameter space, and model
generation

a. Precipitation data and study domain

In this study, the uncertainty model is generated for

PERSIANN based on stage IV data. After developing

the method and evaluating its performance, the same

process can be used for any other satellite product to

quantify the joint probability distribution of satellite and

radar estimates.

PERSIANN (Sorooshian et al. 2000) uses a statistical

relationship between the IR-based estimates of cloud-

top brightness temperature and rain rate. These IR im-

ages are from global geosynchronous satellites provided

by the Climate Prediction Center (CPC). Further,

FIG. 2. (left) Daily satellite estimate vs daily radar rainfall observation. (right) Fitted distribution for a specific

spatial and temporal distribution over different bins of satellite-estimated rainfall rate (schematic view).
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using a neural network, the rainfall estimates are

adjusted based on microwave data from low-orbital

satellites [e.g., Advanced Microwave Scanning Ra-

diometer for Earth Observing System (AMSR-E) on

the Aqua spacecraft, the Advanced Microwave

Sounding Unit-B (AMSU-B) on board the National

Oceanic and Atmospheric Administration (NOAA)

satellite series, and the Tropical Rainfall Measuring

Mission (TRMM) Microwave Imager (TMI)].

For the reference precipitation, the Next Generation

Weather Radar (NEXRAD) stage IV Multisensor

Precipitation Estimator (MPE; Lin andMitchell 2005) is

used. NEXRAD is a network of 178 Doppler weather

radars (WSR-88D) that is operated by the National

Weather Service (NWS) across the United States

and measures precipitation at a high spatial resolution.

To measure the precipitation, a relationship between

reflectivity and rain rate (Z–R relationship) is used that is

calibrated differently for different types of precipitation

(Rinehart 2004). To create the NEXRAD stage IV data,

gauge observations are also added to the data using the

MPE where the values of the rain gauges are taken from

the weather service stations in the NWS Hydrometeo-

rological Automated Data System network.

It should be mentioned that using stage IV data does

not imply their perfection. As has been pointed out in

the literature, a radar precipitation dataset has its own

uncertainties, which should be evaluated separately

(Smalley et al. 2014).

A 58 3 58 region over the southeastern United States

bounded between 308 and 358N and 858 and 908W is

selected (Fig. 3). Data include the months of June, July,

August, December, January, and February for the 5-yr

period of 2005–09. Both satellite and radar data are

FIG. 3. Model calibration domain (red box) and DMIP2 study watersheds’ location (red area).

FIG. 4. Seasonal differences in distribution of satellite precipitation data with respect to the corresponding radar

data for (left) summer and (right) winter from the calibration domain with temporal resolution of 6 h and spatial

resolution of 0.258.
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aggregated into 3-, 6-, 12-, and 24-h resolutions in time

and 0.258 3 0.258, 0.58 3 0.58, 0.758 3 0.758, and 18 3 18
spatially. Both satellite and radar rainfall data that are

less than 1mmday21 are assigned to zero-rainfall pixels.

These parts of data belong to three categories: 1) false

alarms that occur when the satellite product shows

precipitation and radar measurement shows zero pre-

cipitation; 2) missed rain, when the reference is showing

precipitation but the satellite shows none; and 3) correct

detection of no rain, which is the case when both satellite

and reference are showing zero precipitation.

b. Seasonal difference

In general, the study region has a humid subtropical

climate. Precipitation patterns vary greatly between

summer and winter. During summer, precipitation is

almost entirely convective, caused by mesoscale com-

plexes and thunderstorms. Wintertime precipitation is

mostly stratiform and tied to synoptic-scale systems.

Snowy days are very rare in the region but the warm

moist air coming from the Gulf of Mexico during winter

could cause frontal freezing rain resulting in ice cover

that usually lasts for several days. These different pre-

cipitation patterns result in differences in the satellite

precipitation data for the two seasons.

Investigating the precipitation products shows that

these data are statistically different in winter versus

summer. During the summer, data are more scattered,

and satellite images show a wider range of values,

whereas in winter, data are underestimated, and satellite

FIG. 5. Comparison of the three moments of radar data vs the mean satellite rainfall rate with temporal resolution of 6-h and spatial

resolution of 0.258. The scatterplot in blue is satellite rainfall rate (x axis) vs radar rain rate (y axis) for (top) June–August 2005–09 and

(bottom)December–February 2005–09. (from left to right) The dotted lines in red are themean, standard deviation, and skewness of radar

rainfall rate vs the mean of the satellite precipitation bins.
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images show a narrower range of change in rainfall

values, as seen in Fig. 4.

The seasonal differences are also apparent in the three

first moments of the data (expected value, standard

deviation, and skewness).

From the graphs of the mean of the data (Fig. 5, left),

we can see that, for winter, the mean is closer to a 1:1

linear function and, for summer, it looks like a power

function, and the satellite data are overestimating the

amount of precipitation. This shows that treating sum-

mer and winter data separately would result in a more

accurate estimation of uncertainty.

c. Parameter space and model generation

In section 2c, we stated that Eqs. (11)–(13) represent

the parameters of the selected generalized probability

FIG. 6. Parameter space for summer data: (from top to bottom) (left) a (shift slope), c (shape slope), and e (scale

coefficient) and (right) b (shift intercept), d (shape intercept), and f (scale power).
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distribution as a function of rainfall rate and that each

equation contains two distinct parameters (a total of

six), which need to be identified. Figures 6 and 7 rep-

resent the three-dimensional parameter spaces for each

of the six parameters (a, b, c, d, e, and f ) as a function of

spatial and temporal resolutions. For better visualization,

each of the six panels is plotted in such a way that the

front center shows the lowest point in the space and

gradually increases toward the far back center. For the

sake of clarity, if, for example, one chooses a specific

spatial and temporal resolution (e.g., 3 h and 0.258), the
corresponding six parameters are obtained from each of

these planes for summer and winter separately. By in-

serting those parameters in Eqs. (11)–(13), we have the

FIG. 7. As in Fig. 6, but for winter data.
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three parameters of the product’s uncertainty distribution

as a function of rainfall rate, which now allows us to

construct the uncertainty model. For any other desired

spatial and temporal resolution between the offered

ranges, these parameters can be interpolated linearly in

the three-dimensional planes. We caution that any ex-

trapolation of the parameters beyond the spatial and

temporal resolutions used in this study should be further

evaluated. For the case study selected, the specific values

of the six parameters used will be introduced in section 5.

Figures 8 and 9 are the joint probability of the

PERSIANN product and the reference data in 16 dif-

ferent pairs of spatial and temporal resolutions for sum-

mer and winter, respectively. These plots are generated

using the uncertainty model presented in this work.

In both plots, the top-left corner displays the highest

spatial and temporal resolution, and the bottom-right

corner represents the coarsest resolution. The joint

probability shows that products with the highest reso-

lution have the highest amount of randomness because

the distributions are scattered in the plane with low

probability over almost the entire space. Moving from

right to left in the lower panels of the Figs. 8 and 9, we

can observe more concentration on a line in the plane

that shows a higher peak and more pronounced mode of

the distribution and less randomness. Additionally, as

mentioned before in the literature (Hong et al. 2006),

the spread of the uncertainty increases in each plot with

an increase in the rainfall rate, which shows standard

deviation to be an increasing function of rainfall rate.

In the distributions for summer, there is an obvious

bias where the peak of the distribution is tilted toward

the lower radar value, which shows that the satellite

overestimates during the summer. The distributions are

less biased during the winter, where the darker points

with higher probabilities are closer to a 1:1 line.

FIG. 8. Joint probability of radar and satellite rainfall for summer: (from left to right) 0.258, 0.508, 0.758 and 1.008 and (from top to bottom)

3-, 6-, 12-, and 24-h resolution.
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4. Model evaluation

To evaluate the model, in Fig. 10 we show the com-

parison of RMSE of fitting the uncertainty of PERSIANN

from the corresponding stage IV data for each pair of

spatial and temporal resolution using several types of dis-

tributions, including GND, normal, gamma, lognormal,

andWeibull distributions. The results show that the GND

model fits better to those data than to others. GND dis-

tribution is also able to model the skewness of the joint

distribution associated to satellite and stage IV pre-

cipitation products that cannot be estimated by sym-

metrical distribution, such as Gaussian.

The proposed approach models the non-Gaussian

joint distribution of satellite and radar estimates,

which enables us to estimate the interval bounds of

satellite estimates at any range (e.g., upper and lower

bounds of 90% interval). To further evaluate the un-

certainty range obtained from the model, for 2007 and

2010, the 80% and 90% uncertainty intervals (10%–

90% and 5%–95% uncertainty ranges) are calculated

for a domain from 308 to 408N and 858 to 958W. This

domain also contains our calibration domain. The year

2007 is selected from our calibration period, and 2010 is

chosen for evaluation. The data are at 0.258 and 3-h

resolution, from which the whole year is going to be 2920

images of 40 3 40 pixels. For each pixel, using Dt 5 3h

and Ds 5 0.258 and the rainfall rate of that pixel, the

parameters of the GND model are estimated, and the

uncertaintymodel is generated.Using the inverse CDFof

the distribution, the 10% and 90% rainfall rates and the

5%and 95%rainfall rates are estimated. For each pixel in

both years, the percentage of the images that radar falls

in the uncertainty range is calculated, and the result is

FIG. 9. As in Fig. 8, but for winter.
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illustrated below. Figures 11 and 12 show the percentage

of detection for the years 2007 and 2010, respectively.

From these figures, we see how the uncertainty range of

the model is able to capture the radar rainfall rate for

more than 75% of the time for the 90% uncertainty

ranges and 65% of the time for the 80% uncertainty

ranges.

5. Uncertainty analysis of satellite precipitation:
Case study over the Illinois River basin south
of Siloam Springs

The GND model is further evaluated for a case study

using 3 yr of data from 2006 to 2008 over the Illinois

River basin located upstream of a USGS gauging station

(07195430) south of Siloam Springs, Arkansas (Fig. 13).

The watershed has been used as a test basin for the

Distributed Model Intercomparison Project (DMIP).

The size of the Siloam watershed is 1489km2. The ele-

vation ranges from 285m at the outlet to 590m at the

highest, and the basin’s land cover can be described as

uniform, with approximately 90% of the basin area be-

ing covered by deciduous broadleaf forest, with the re-

mainder beingmostly woody. The dominant soil types in

the basin are silty clay (SIC), silty clay loam (SICL), and

silty loam (SIL). The average annual rainfall and runoff

of the basin are about 1200 and 300mm yr21, re-

spectively (Smith et al. 2004). The Illinois River basin is

FIG. 10. Comparison between the RMSE of fitting the proposed distribution and gamma, normal, lognormal, and

Weibull distributions for the (top) (left) 0.258, 24-h and (right) 0.58, 12-h and (bottom) (left) 0.758, 6-h and (right)

1.08, 3-h resolutions for the joint probability of PERSIANN and stage IV radar data during the summer and

winter of 2004–06: GND-G (black), gamma (blue), normal (purple), lognormal (red), and Weibull (green)

distributions.
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free of major complications, such as orographic in-

fluences, significant snow accumulation, and stream

regulations (Smith et al. 2004).

For this experiment, the PERSIANN data over the

domain are used as the precipitation data, and stage IV

radar data are used as the reference. The data are av-

eraged over the domain to determine the mean areal

precipitation and are aggregated from 3 to 6 h. The area

is 1480km2, which is approximately 0.358 3 0.358 (each
degree is considered to be about 111km). For each point

of the PERSIANN time series, considering its temporal

resolution (6h), spatial resolution (0.358), and rainfall rate,

the uncertainty distribution parameters are calculated

using the parameter space equation introduced in this

study. The season of the precipitation should also be

considered here. We considered events from May to

October as summer and November to April as winter

precipitation. From each distribution, 1000 samples are

randomly drawn to estimate the uncertainty range of

each satellite precipitation point using a Monte Carlo

approach.

For the period of November–April, the parameters

are linearly interpolated from Fig. 7 (winter) and, for

the remainder of the year, the parameters are calcu-

lated from Fig. 6 (summer). For winter, the parameters

are a 5 20.7011, b 5 1.7992, c 5 0.0085, d 5 20.9032,

FIG. 11. Percentage of radar data that falls into (left) 80% and (right) 90% of the uncertainty range for 0.258 and 3-h data for 2007.

FIG. 12. As in Fig. 11, but for 2010.
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e5 7.7719, and f5 0.3979; for summer, the parameters

are a5 0.1867, b5 0.912, c5 0.0031, d520.9904, e5
3.1023, and f 5 0.5446. The parameters are then in-

corporated into Eqs. (11)–(13) to estimate the three

parameters of the uncertainty distribution (shape,

scale, and shift parameters). From each time step of the

PERSIANN time series over the region, the three pa-

rameters of the uncertainty distribution are calculated

based on the rainfall rate at the given time. This will

result in final form of the uncertainty distribution.

To evaluate the uncertainty model, the 90% un-

certainty range is calculated using the CDF of the

distribution. The rainfall rates corresponding to the 5th

and 95th percentiles of the range are estimated and used

as lower and upper bounds of the uncertainty range,

respectively. The mean of the satellite precipitation

uncertainty distribution is calculated using Eq. (8). The

5th and 95th percentiles of the uncertainty range are

plotted for winter and summer in Fig. 14, along with the

scatterplot of the PERSIANN and stage IV radar rain-

fall over the watershed. Furthermore, the mean of the

uncertainty model versus the satellite rainfall rate is

plotted in black. The calculated results show that 68%of

the summer reference precipitation data and 70% of the

FIG. 13. Illinois River basin south of Siloam Springs, Arkansas (Behrangi et al. 2011) showing

terrain elevation (m).

FIG. 14. Uncertainty range and the model mean for (left) winter and (right) summer. The blue-dot scatterplot

shows the stage IV radar data (reference) vs the PERSIANN rainfall data over the Illinois River basin south of

Siloam Springs, Arkansas, for the years 2006–08. The green, red, and black lines represent the 5% and 95% un-

certainty range and the mean of the uncertainty distribution, respectively, vs the satellite rainfall rate.
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winter reference precipitation data (blue scattered dots)

fall into the range, which means that the calibrations for

both seasons are doing a good job by covering the range

of the variability in the data. In both seasons, the spread

of the distributions increases with an increase in the

rainfall rate. The summer season shows a more skewed

distribution because the mean of the distribution is close

to the lower bound; for winter, the mean is almost in the

middle of the lower and upper bounds.

In Fig. 15, the 6-h time series of the stage IV rainfall

(Fig. 15a), PERSIANN (Fig. 15b), and mean of the

uncertainty model (Fig. 15c) for the year 2006 are pre-

sented. The uncertainty model performs very well in

reducing the overestimation from the PERSIANN

product while keeping its pattern. In this work, the focus

is to introduce a method to estimate the uncertainty

range of the satellite precipitation product. Specifically,

the proposed model not only provides a range for the

uncertainty, it also serves as a bias-correctionmethod. In

Table 1, the mean of the distribution is compared to the

stage IV radar 6-h time series in terms of root-mean-square

error (RMSE), percent bias, and correlation coefficient.

The same statistics are calculated for the PERSIANN

satellite estimates and radar data. By comparing the

statistics for the summer and winter periods, respectively,

as well as for the entire 3-yr period, the mean of the un-

certainty improves the satellite precipitation estimates. In

all three cases, the RMSE and percent bias are improved.

The improvement is more distinct in percent bias when

the two seasons are analyzed separately. Generally

speaking, satellite precipitation products have a larger

bias in the summer (AghaKouchak et al. 2012), and the

proposedmethod decreased this bias by 47%. For winter,

the bias is decreased by 23%. The correlation coefficient

stayed the same inmost of the cases because themean is a

function of satellite precipitation, and the transformation

would not significantly change the correlation coefficient.

In all three cases for the respective summer and winter

FIG. 15. The 6-h basin average precipitation intensity for (a) stage IV radar data, (b) PERSIANN, and (c) mean of

the uncertainty model over the Illinois River basin south of Siloam Springs, Arkansas, for the year 2006.

TABLE 1. Evaluation of the mean of the uncertainty model compared to the original satellite product.

RMSE [mm (6 h)21] Bias (%) Correlation coefficient

Precipitation comparison

Radar vs satellite (PERSIANN) estimation 12.89 24.6 0.70

Radar vs mean of uncertainty distribution 10.47 16.01 0.70

Summer comparison

Radar vs satellite (PERSIANN) estimation 14.15 245.8 0.64

Radar vs mean of uncertainty distribution 10.8 223.9 0.64

Winter comparison

Radar vs satellite (PERSIANN) estimation 7.22 4.2 0.7

Radar vs mean of uncertainty distribution 6.77 3.22 0.7
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seasons, as well as the entire 3-yr period, theRMSEof the

satellite versus radar rainfall improved. This improve-

ment is 23% for the summer data, 6% for the winter data,

and 18% for the entire 3-yr period.

6. Summary and conclusions

With the increased global use of satellite precipitation

estimates for various applications, it is of paramount

importance that the uncertainties associated with such

products be evaluated and quantified carefully. Previous

studies addressed this need by modeling the bias and the

variance of the uncertainty at a specific resolution of the

product. In this study, a method is introduced to quantify

the uncertainty associated with the PERSIANN product.

The model is based on a generalized normal distribution

of the joint probability of the satellite precipitation

product and the stage IV radar rainfall (used as the

reference) for various spatial and temporal resolutions

and rainfall rate, and at each specific satellite measure-

ment it will generate the conditional probability distri-

bution of the reference data.

The proposed model is calibrated with data over a 58 3
58 area in the southeastern United States for 2005–09 and

for different spatial and temporal resolutions. The model

is calibrated differently for summer and winter because

the characteristics of the error are different for the two

seasons (Tian et al. 2009; AghaKouchak et al. 2012).

The main conclusions drawn from the testing and

comparison studies reported above are as follows:

1) GND is a skewed version of normal distribution,

which is able to better model the precipitation

uncertainty. The model is evaluated in terms of the

goodness-of-fit compared to the normal, gamma,

lognormal, and Weibull distributions. It is shown

that, over different resolutions, this model always

produces a better fit (except for a very small number

of exceptions). The results from the evaluation over

a 108 3 108 region in the southeastern United States

for 2007 and 2010 show that, in both years, the

uncertainty range of 90% covers more than 75% of

the pixels, and the uncertainty range of 80% covers

more than 65% of the pixels. This result supports the

suggestion that the model can simulate the range of

uncertainty to a good degree.

2) With the flexibility it offers, the proposed model

removes the often-confusing dilemma faced in

choosing an appropriate probability distribution for

capturing the uncertainty of satellite precipitation

estimates. It is noted that the proposed method,

whose parameters are a function of rainfall rate

and spatial and temporal resolution, provides the

adaptability to apply the model, not only for lumped

but also for distributed modeling purposes with any

desired spatial resolution and temporal accumulation.

The model is evaluated at basin scale over the Illinois

River basin south of Siloam Springs, Arkansas, for the

period of 2006–08. The rainfall time series and their as-

sociated uncertainties estimated using the proposed ap-

proach were compared to radar rainfall estimates. The

results show improvement in quantifying the uncertainty

associated to the satellite precipitation estimates. Percent

bias and RMSE both decreased for the summer and

winter periods for the selected study region.

Users of the proposedmodel should be aware that this

uncertainty model is defined for cases where both sat-

ellites and radar detected precipitation with a value

larger than the threshold (1mmday21). The next step is

to extend the model to cover false alarm and missed

precipitation. The general framework of the proposed

uncertainty model allows for its application to other

satellite precipitation products with the proper calibra-

tion of the model parameters, as was done for the

PERSIANN data.
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