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ABSTRACT

This study evaluates the performance of a newly developed daily precipitation climate data record, called

Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks–Climate

Data Record (PERSIANN-CDR), in capturing the behavior of daily extreme precipitation events in China

during the period of 1983–2006. Different extreme precipitation indices, in the three categories of percentile,

absolute threshold, and maximum indices, are studied and compared with the same indices from the East Asia

(EA) ground-based gridded daily precipitation dataset. The results show that PERSIANN-CDRdepicts similar

precipitation behavior as the ground-based EA product in terms of capturing the spatial and temporal patterns

of daily precipitation extremes, particularly in the eastern China monsoon region, where the intensity and

frequency of heavy rainfall events are very high. However, the agreement between the datasets in dry regions

such as the Tibetan Plateau in the west and the TaklamakanDesert in the northwest is not strong. An important

factor that may have influenced the results is that the ground-based stations from which EA gridded data were

produced are very sparse. In the station-rich regions in eastern China, the performance of PERSIANN-CDR is

significant. PERSIANN-CDR slightly underestimates the values of extreme heavy precipitation.

1. Introduction

Precipitation is a key component of the hydrological

cycle and a primary input for hydrometeorological and

climate models (Sorooshian et al. 2011). Therefore, ac-

curate estimation of the rainfall amount at sufficient

temporal and spatial resolutions is a prerequisite for

a wide range of applications from global climate mod-

eling (Dai 2006) to local weather and flood forecasting

(Demargne et al. 2014). Historically, precipitation

datasets based on ground-based rain gauge observations

have served as the main source of precipitation mea-

surements for various hydrological, hydrometeorologi-

cal, and climatological applications because of their

relatively long record lengths (Yatagai et al. 2009).

However, in many regions of the world, ground-based

measurement networks (radar and/or rain gauges) are

sparse and inadequate for capturing the spatial and

temporal variability of precipitation systems; in some

cases, these measurement networks are nonexistent.

This lack of adequate precipitation data limits the ability

to conduct hydroclimatological investigations and the

use of physical and statistical hydrological models for

water resources management.

From a statistical point of view, the longer the dura-

tion of the data time series, the more valid the results of

the analysis of the characteristics of climate extremes
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will be (Klein Tank et al. 2009). Based on the World

Meteorological Organization (WMO) report, at least 30

years of historical data are needed for the purpose of

conducting climate studies (Burroughs 2003). Lack of

a consistent record of130 years has been themotivation

for exploring the utility of satellite-based precipitation

products that will provide full global coverage at rela-

tively high temporal and spatial resolutions for studying

extremes and long-term climate variability. Until re-

cently, the Global Precipitation Climatology Project

(GPCP) has provided long-standing, globally complete

precipitation data by merging the highest-quality satel-

lite and gauge estimates (Huffman et al. 1997). In par-

ticular, GPCP has been providing three precipitation

datasets, including monthly (Adler et al. 2003; Huffman

et al. 2009) and 5-day (Xie et al. 2003) datasets at 2.58
resolution covering the period from 1979 to present, and

a daily dataset at 18 resolution covering the period from

1996 to present (Huffman et al. 2001).

However, the coarseness of the GPCP precipitation

datasets, unsuitable for the study of extremes, has pro-

vided an opportunity to consider certain alternatives. Be-

ing an infrared (IR)-based model, the Precipitation

Estimation from Remotely Sensed Information Using

Artificial Neural Networks (PERSIANN; Hsu et al. 1997;

Sorooshian et al. 2000) model can estimate global pre-

cipitation at half-hourly temporal and 0.258 spatial reso-
lutions. The National Climatic Data Center (NCDC)

Climate Data Record (CDR) program of the National

Oceanic and Atmospheric Administration (NOAA) has

established a new retrospective satellite-based precip-

itation dataset, called PERSIANN-CDR, for long-term

hydrological and climate studies (Ashouri et al. 2015).

PERSIANN-CDR is a multisatellite, high-resolution pre-

cipitation product that provides daily precipitation esti-

mates at 0.258 spatial resolution from 1 January 1983 to 31

March 2014. PERSIANN-CDR uses the archive of Grid-

ded Satellite (GridSat-B1) IR data (Knapp 2008) as the

input to the PERSIANN model. The retrieval algorithm

uses IR satellite data from global geosynchronous satel-

lites as the primary source of precipitation information. To

meet the calibration requirement of PERSIANN, the

model is pretrained using the National Centers for Envi-

ronmental Prediction (NCEP) stage IV hourly pre-

cipitation data. Then, the parameters of themodel are kept

fixed and the model is run for the full historical record of

GridSat-B1 IR data. To reduce the biases in the estimated

precipitation, while preserving the temporal and spatial

patterns in high resolution, the resulting estimates are then

adjusted using the GPCP monthly 2.58 precipitation

products (Ashouri et al. 2015).

PERSIANN-CDR provides the opportunity to study

the behavior of extreme precipitation patterns on

a global scale over the past three decades. However, an

important step in determining the efficacy of a dataset

for such applications is to test and compare it with

available ground-based observations. This requires in-

dependent testing and comparisonwith available ground-

based observations over a given time period. The primary

objective of the present study is therefore to evaluate the

efficacy of PERSIANN-CDR in capturing the behavior

of extreme precipitation events over China.

The reason for focusing on China is that, as the most

populated nation (Piao et al. 2010) and one of the

fastest-growing economies in the world (Hubacek et al.

2007), its requirements for hydroclimatological infor-

mation and availability of reliable, long-term, and rela-

tively high-resolution precipitation information are of

critical importance. Such information is required for

a range of applications, including but not limited to

statistical flood frequency analysis and water resources

planning, design, and system operation. Almost every

year, floods in China cause considerable economic losses

and serious damage to both urban and rural areas

(farms). In 2013, floods in China affected 120 million

people and an agriculture production area 1.19 3
105 km2 in size, causing economic damage totaling more

than $50.7 billion (http://politics.people.com.cn/n/2014/

0109/c70731-24072825.html). Therefore, the ability to

characterize and study extreme climate events in China,

with its diverse conditions of geography and topography

and its susceptibility to monsoons, depends on data that

provide better coverage than sparse rain gauge net-

works. The availability of remotely sensed precipitation

datasets, as an alternative to in situ observations, is

evaluated in the present paper.

2. Data and analysis

We obtained the observations from the gauge-based

analysis of daily precipitation over East Asia (EA; ftp://

ftp.cpc.ncep.noaa.gov/precip/xie/EAG/EA_V0409/; Xie

et al. 2007). The EA dataset contains observations from

;1400 ground-based stations across China. Figure 1

shows the distribution of rain gauge stations in the EA

dataset and the elevation map of China. Rain gauge

distribution in terms of areal coverage is highly uneven.

There are approximately 1.8 gauges per 10 000 km2 in

the eastern monsoon region of China, but the number

reduces to ;0.4 per 10 000 km2 in the western and

northwestern regions of China. The procedure used by

Xie et al. (2007) to develop the gridded EA dataset was

through the interpolation of point measurements into

0.58 3 0.58 grid boxes using the optimal interpolation

(OI) method. The EA dataset provides daily rainfall

data over China for the period from 1 January 1962 to 31
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May 2007. This is used as the reference dataset in this

study.

The PERSIANN-CDR dataset was provided by the

NOAANCDC and theCenter forHydrometeorology and

Remote Sensing (CHRS) at the University of California,

Irvine (ftp://data.ncdc.noaa.gov/cdr/persiann/files/). For

comparison purposes, PERSIANN-CDR 0.258 precipita-
tion estimates are aggregated into the same resolution as

that of the observed data (0.58). It is also noteworthy that

both PERSIANN-CDR and EA daily rainfall datasets

correspond to the 0000–2400 UTC time frame.

To evaluate the performance of PERSIANN-CDR in

capturing the behavior of precipitation extremes over

China, 11 extreme precipitation indices, in three general

categories, are calculated and compared respectively

with the same indices from the EA gauge-based dataset.

Seven of these indices (SDII, R20mm, R10mm, Rx1d,

Rx5d, CWD, and CDD, all described in Table 1) are

defined by the Expert Team on Climate Change De-

tection and Indices (ETCCDI; Klein Tank et al. 2009).

The work of the ETCCDI was sponsored jointly by the

WMO Commission for Climatology (CCI), the Joint

Technical Commission for Oceanography and Marine

Meteorology (JCOMM), and theWorldClimateResearch

Programme (WCRP) on Climate and Ocean: Variability,

Predictability and Change (CLIVAR). Moreover, we

looked at the four other extreme precipitation indices

(RR99p, RR95p, R20mmTOT, and R10mmTOT). The

definitions of these 11 extreme precipitation indices are

presented in Table 1. Because the EA datasets are only

available up to May 2007, all of the indices are calculated

using daily precipitation data from PERSIANN-CDR and

EA dataset products for the 1983–2006 period.

In addition to our evaluation over China, we also

conducted a more localized test of PERSIANN-CDR’s

performance by zooming in on a ‘‘box’’ surrounding the

YellowRiver (YR) basin, where there is a higher density

of rain gauges (see Fig. 1). The purpose of this test was to

determine the sensitivity of the results to the number of

gauges available and how well PERSIANN-CDR com-

pares with the increase in gauge density, which is an-

ticipated to capture the heterogeneity of precipitation

more accurately.

Besides evaluating the spatial pattern of the mean

value of 11 extreme indices, we still calculated the Pear-

son correlation coefficient R in each pixel between the

PERSIANN-CDR and the EA dataset during the 1983–

2006 period and the root-mean-square error (RMSE) and

R for the 24-yr average of 11 extreme indices:
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where O and P are the extreme indices from EA and

PERSIANN-CDR datasets in yth year or pth pixel, re-

spectively; n is the length of the annual extreme indices

(equal to 24 in this research); andm is the pixel number

over China.

3. Results

a. Percentile indices

Figure 2 shows the performance of PERSIANN-CDR

in capturing the 99th (RR99p) and 95th (RR95p)

FIG. 1. (left) The distribution of rain gauge stations in the EA dataset with the boundary of the YR basin in red

and (right) the elevation map of China. The stations include ;700 China Meteorological Administration stations

and ;700 hydrological stations from the Chinese Yellow River Conservation Commission (YRCC).
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percentile indices of the daily precipitation at each 0.58 3
0.58 grid box over China. High values of annual RR99p

and RR95p appear in southeastern China. In general,

PERSIANN-CDR captures a spatial distribution of

RR99p andRR95p similar to that of the EAdataset, with

values increasing from north to south and east to west.

However, the disagreement between PERSIANN-CDR

and the EA dataset is relatively obvious for percentile

indices in western and northwestern China. As far as the

Pearson correlation coefficients between PERSIANN-

CDR and the EA dataset are concerned, the signifi-

cance of correlation coefficient values was tested at the

0.05 level using the two-tailed Student’s t test. As

shown in Fig. 2, high positive and statistically signifi-

cant correlations are found in most regions for both

indices, especially over the southeastern regions, where

extreme precipitation events occur frequently. Over all

of China, the significant correlations at the 95% con-

fidence level for RR99p and RR95p cover 28% and

45% of the country, respectively. However, the per-

centages increase to 32% and 64%, respectively, in the

monsoon area. The scatterplot shows that PERSIANN-

CDR has good agreement with gridded-gauge data.

PERSIANN-CDR tends to underestimate the low-value

percentile indices for the dry and arid regions in western

and northwestern China.

b. Absolute threshold indices

The five absolute threshold indices for PERSIANN-

CDR and the EA dataset are calculated and plotted in

Fig. 3. As noted in the previous section, PERSIANN-

CDR exhibits good agreement with the EA gridded-

gauge data in depicting the spatial distributions of the

absolute threshold indices. With respect to the correla-

tion coefficients between PERSIANN-CDRand the EA

dataset, high correlations are observed in the southern

and eastern regions of the country, where rain gauge

networks are much denser and where most of the heavy

TABLE 1. Extreme precipitation indices used in the analysis.

Category ID Definition Unit

Percentile indices RR99p The 99th percentile of daily precipitation on wet days (days with daily

precipitation $1mm)

mmday21

RR95p The 95th percentile of daily precipitation on wet days mmday21

Absolute threshold indices SDII Annual precipitation from wet days mmday21

R20mm Annual count of days when daily precipitation is $20mm days

R10mm Annual count of days when daily precipitation is $10mm days

R20mmTOT Annual total precipitation when daily precipitation is $20mm mm

R10mmTOT Annual total precipitation when daily precipitation is $10mm mm

Max indices Rx1d Annual max 1-day precipitation mm

Rx5d Annual max 5 days of consecutive precipitation mm

CWD Annual largest number of consecutive days with daily precipitation $1mm days

CDD Annual largest number of consecutive days with daily precipitation ,1mm days

FIG. 2. The 99th and 95th percentile indices of extreme daily precipitation from (a) the EA dataset and (b) PERSIANN-CDR. (c) The

spatial correlation distribution of the indices from the EA dataset and (d) the scatterplots of the indices from PERSIANN-CDR dataset.

The stippled areas in (c) show correlation coefficients significant at the 95% level.
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rainfall events occur. Over all of China, significant cor-

relations at the 95% confidence interval for SDII,

R20mm, R10mm, R20mmTOT, and R10mmTOT cover

63%, 60%, 70%, 62%, and 70% of total area, re-

spectively. However, the percentages increase to 85%,

76%, 95%, 79%, and 95%, respectively, in the monsoon

area. The daily precipitation in parts of northwestern

China is below the threshold (20 and 10mm), resulting

in blank spaces in themap of annual correlation analysis.

Compared to percentile indices, PERSIANN-CDR

shows closer agreement with the EA dataset in the

eastern China monsoon region for the absolute thresh-

old indices. The correlation of annual absolute thresh-

old indices between PERSIANN-CDR and the EA

dataset is significant in most of the eastern China

monsoon regions.

c. Maximum indices

As for the third category of the extreme precipitation

indices, we look at the maximum indices of precip-

itation, bothwith respect to the value of the daily rainfall

and to the duration of the rain/no-rain period. Figure 4

shows the Rx1d, Rx5d, CWD, and CDD statistics

derived from the PERSIANN-CDR and EA datasets.

As shown, the agreement between PERSIANN-CDR

and the EA dataset in replicating the behavior of the

maximum 5-day precipitation (Rx5d) index is better

than that of themaximum daily precipitation (Rx1d). As

for the CWDandCDD indices, in general, PERSIANN-

CDR depicts similar patterns as those of the EA data-

set, with a better performance in replicating the CDD

index over the dry and arid regions in western China.

FIG. 3. As in Fig. 2, but for the absolute threshold indices.
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Thescatterplots also illustrate that the PERSIANN-

CDR results agree well with those obtained from the

EA dataset.

4. Discussion

As already discussed above, PERSIANN-CDR is bias

corrected using the GPCP monthly 2.58 product. In

brief, GPCP monthly data use the global monthly gauge

information provided by the Global Precipitation Cli-

matology Centre (GPCC; Rudolf 1993; Rudolf et al.

1994; Schneider et al. 2008), as well as the merged sat-

ellite precipitation estimates, to produce its product. We

note that the EA dataset used in our study is based on

daily precipitation information from ;1400 gauging

stations across China, 700 of which are from meteoro-

logical stations and the rest from hydrological observa-

tion networks that are not included in the GPCC

dataset. Furthermore, GPCC is a 2.58 monthly product

while EA is a 0.58 daily observation dataset. Therefore,

the combination of the above factors minimizes the

likelihood of dependency between PERSIANN-CDR

and the EA dataset.

To adequately discuss the results, China is separated

into two distinct regions, namely, western and north-

western China and the ‘‘monsoon’’ region (see Fig. 1;

Liu et al. 2014). The monsoon region receives more

precipitation as compared to the arid and the semiarid

regions in western and northwestern China. The density

of rain gauges is greater in the monsoon region (ap-

proximately two gauges per 10 000 km2) than in the

western and northwestern regions (approximately one

gauge per 25 000 km2). Within the monsoon region,

a separate study was also conducted, focusing on the

Yellow River basin (see Fig. 1), where there is a higher

concentration of rain gauges (approximately eight

gauges per 10 000km2).

a. Evaluation results for western and northwestern
China

The agreement between PERSIANN-CDR and the

EA dataset in western and northwestern China is

FIG. 4. As in Fig. 2, but for the max indices.
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relatively weak as measured by the 11 extreme pre-

cipitation indices. The corresponding correlation co-

efficients are close to zero and, as shown in some pixels,

they are even negative (Figs. 2–4). There are three

possibilities for the lack of stronger agreement between

the two datasets. Either the satellite-based estimations

or the ground-based observations are inaccurate or both

are inaccurate. It could be argued that satellite estimates

of precipitation are not replacements for high-quality,

ground-based observations obtained from a relatively

dense rain gauge network that captures the spatial pat-

tern of the rain events. However, western and north-

western China contain few ground-based stations,

leading to uncertainty and potential errors in repre-

senting the spatial heterogeneity of rainfall for this vast

region. Figure 5 shows the probability density function

(PDF) of the relative error for the 11 precipitation in-

dices, for different values of rain gauge density (the

number of stations within a pixel). The large relative

errors are more likely from the regions with sparse rain

gauge stations (e.g., western and northwestern China)

based on PDFs for all 11 extreme precipitation indices.

Moreover, the effects of topography on precipitation

during the interpolation process from point measurements

to gridded networks are not fully taken into account. The

highest and most expansive highland in the world, the

Tibetan Plateau, which is located in northwestern China,

has an average elevation of over 4000m above mean sea

level. However, the interpolation method, the OI scheme,

used in preparation of the EA dataset attempts to mini-

mize the total error of all the observations by placing dif-

ferent ‘‘optimal’’ weights on individual observations

according to statistical information (Gandin 1965). As is

often the case, rain gauge locations usually tend to lie at

lower elevations relative to the surrounding terrain (Tong

et al. 2014), and therefore, simple interpolation from

sparse rain gauge stations may not capture the influence of

orographic lifting on precipitation, especially in topo-

graphically complex regions like the Tibetan Plateau.

Adam et al. (2006) suggest that the correction for oro-

graphic effects leads to a 20.2% increase in net pre-

cipitation in orographically influenced regions. Similarly,

one cannot rule out the influence of the complex topog-

raphy on the quality of satellite rainfall estimates.

b. Evaluation results for the eastern China monsoon
region

The agreement between PERSIANN-CDR and the

EA dataset in China’s monsoon region, as measured by

the 11 extreme precipitation indices, demonstrates that

PERSIANN-CDR is capable of representing extreme

precipitation events in eastern China, which is highly

susceptible to monsoon-induced flooding. As can be

observed from Fig. 5, the PDF curves of relative errors

FIG. 5. PDFs of the relative error for the 11 extreme precipitation indices for different rain gauge densities throughout China.

JUNE 2015 M IAO ET AL . 1393



for all 11 extreme precipitation indices become more

peaked, tighter, and symmetric in regions with higher

densities of rain gauges (e.g., the eastern China mon-

soon region), suggesting smaller relative errors between

PERSIANN-CDR and the EA dataset in data-rich re-

gions. Among the 11 extreme precipitation indices, it is

found that PERSIANN-CDR tends to slightly under-

estimate the maximum daily precipitation (Rx1d),

maximum 5 days of consecutive precipitation (Rx5d),

the heavy precipitation (precipitation$10mm), and the

extreme heavy precipitation (precipitation $20mm) in

the eastern China monsoon region.

c. Evaluation results for the Yellow River region

Examination of this smaller region, which has the

highest density of rain gauges, shows that the relative

error for the 11 extreme precipitation indices is rela-

tively small compared to that for western and north-

western China and the eastern China monsoon region.

As can be seen from Fig. 6, the tails of the relative error

PDFs shorten with increasing rain gauge density. This

confirms that a larger rain gauge density is likely to lead

to smaller relative errors. By comparing all the PDFs, it

can be seen that the larger relative errors are associated

with regions with sparse rain gauge density. It is also

noteworthy that the performance of PERSIANN-CDR

in the Yellow River basin remains stable and does not

differ significantly when the threshold (i.e., the mini-

mum number of rain gauges in a given pixel) increases

from four to eight. This suggests a consistent perfor-

mance for PERSIANN-CDR, which is a promising re-

sult, especially for regions that do not have dense rain

gauge networks.

5. Summary

Availability of the newly released daily, 0.258 satellite-
based PERSIANN-CDR covering the period from 1983

to present provides the opportunity to study the be-

havior of extreme precipitation patterns over three de-

cades at a finer resolution than previously possible.

In this study, we evaluated the PERSIANN-CDR

performance in capturing the behavior of extreme

precipitation events over China when compared to

ground-based observations. The period selected for the

study was 1983–2006, and the ground-based gridded EA

daily precipitation dataset was used as the reference

observation set. Based on the results from the 11 extreme

precipitation indices, PERSIANN-CDR has the capa-

bility to represent the extreme precipitation events in the

eastern China monsoon region. Among the three cate-

gories of extreme indices (percentile indices, absolute

threshold indices, and maximum indices), PERSIANN-

CDR shows the best performance for the five absolute

threshold indices relative to the other two indices. In the

FIG. 6. PDFs of the relative error for the 11 extreme precipitation indices for different rain gauge densities in the YR basin.
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case of the western and northwestern regions of China

with very sparse rain gauge density, the agreement be-

tween PERSIANN-CDR and the EA dataset was

weaker. This result does not suggest that PERSIANN-

CDR is less accurate than the EA dataset over this re-

gion. On the contrary, it is a fair argument to suggest that

the most likely reason for the lack of better agreement

between the datasets is because the rain gauge density

fails to capture the heterogeneity of precipitation, as well

as the influence of the complex topography of western

China not captured by the OI scheme. In the case of the

Yellow River basin, the larger relative errors are associ-

ated with regions with sparse rain gauge density. The

comparison shows that the agreement between the

PERSIANN-CDR dataset and the EA dataset does not

change significantly when the rain gauge number increases

from four to higher numbers in each pixel. This observation

provides additional confidence in the robustness of the

PERSIANN-CDR dataset for climate studies and other

applications. To conclude, based on the good agreement

between PERSIANN-CDR and the EA dataset in cap-

turing the behavior of extreme precipitation events spe-

cifically in the eastern China monsoon region, we conclude

that the PERSIANN-CDR dataset can serve as a valuable

observation dataset for various applications, such as sta-

tistical hydrology and other hydroclimate-related inves-

tigations, including studies of changing patterns of extremes

and nonstationarity behaviors at fine regional scales.
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