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Abstract Drought is one of the most relevant natural disas-
ters, especially in arid regions such as Iran. One of the re-
quirements to access reliable drought monitoring is long-term
and continuous high-resolution precipitation data. Different
climatic and global databases are being developed and made
available in real time or near real time by different agencies
and centers; however, for this purpose, these databases must
be evaluated regionally and in different local climates. In this
paper, a near real-time global climate model, a data assimila-
tion system, and two gridded gauge-based datasets over Iran
are evaluated. The ground truth data include 50 gauges from
the period of 1980 to 2010. Drought analysis was carried out
by means of the Standard Precipitation Index (SPI) at 2-, 3-,
6-, and 12-month timescales. Although the results show spa-
tial variations, overall the two gauge-based datasets perform
better than the models. In addition, the results are more reli-
able for the western portion of the Zagros Range and the
eastern region of the country. The analysis of the onsets of
the 6-month moderate drought with at least 3 months’ persis-
tence indicates that all datasets have a better performance over
the western portion of the Zagros Range, but display poor
performance over the coast of the Caspian Sea. Base on the
results of this study, the Modern-Era Retrospective Analysis
for Research and Applications (MERRA) dataset is a pre-
ferred alternative for drought analysis in the region when
gauge-based datasets are not available.

1 Introduction

Drought is a natural phenomenon that significantly impacts
human life and activities (Wilhite et al. 2000). In contrast to
floods, which are spatially and temporally limited extreme
events, droughts usually affect extended areas over long pe-
riods of time. The Intergovernmental Panel on Climate
Change (IPCC 2013) has reported that, over semiarid areas
in mid and low latitudes, the mean annual river runoff and
available water has decreased by 10–13 %, which increases
the chance of drought and its impacts on these regions. To
reduce vulnerability to drought, recent experiences have led
governments to replace the traditional crisis management
approach with a risk management approach (Grasso and
Singh 2011). One of the most important elements in drought
risk management is drought monitoring. Some developed
countries have a capacity to monitor drought; however, many
developing countries like Iran do not have adequate resources
to provide drought-monitoring and early warning systems
(Grasso and Singh 2011).

There are a few global and continental scale drought-
monitoring systems, such as the U.S. Agency for
International Development (USAID) African Drought
Monitor, the University of Washington Experimental Surface
Water Moni tor, the Standardized Precipi ta t ion-
Evapotranspiration Index Global Drought Monitor (Vicente-
Serrano et al. 2010), the Global Drought Portal (GDP) by the
United States National Climatic Data Center (Pozzi et al.
2013), and The Global Integrated Drought Monitoring and
Prediction System (GIDMaPS, Hao et al. 2014), among
others. Generally, global models are available in coarse reso-
lutions with a time lag of a few months. Therefore, the
majority of regional drought-monitoring systems rely on
ground-based observations. In this respect, the main obstacle
for drought monitoring in developing countries is the lack of
access to high-quality climate information in near real time.
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Usually, the lack of attention and low level of urgency given to
the collection and processing of climate data from different
ground-based stations causes a few years’ delay in publishing
the data. In addition, data gaps and irregular spatial coverage
of stations in data-sparse regions reduce the quality of climate
information, which leads to inhomogeneity of the datasets.

The primary variable of interest for drought monitoring is
precipitation. Abnormal precipitation deficit leads to what is
known as meteorological drought (McKee et al. 1993). The
lack of high-quality and extensive long-term precipitation data
is a major limitation for drought monitoring across remote and
ungauged regions (AghaKouchak and Nakhjiri 2012). In re-
cent years, remotely sensed products have provided new ways
of monitoring precipitation from space (Sorooshian et al.
2000; Huffman et al. 2007; Hsu et al. 1997). The near real-
time nature of remote-sensing datasets provides the opportu-
nity to monitor precipitation across large spatial scales
(Sorooshian et al. 2011). Several studies have integrated near
real-time remote-sensing data and long-term datasets to gen-
erate near real-time observations for drought monitoring
(AghaKouchak and Nakhjiri 2012). In addition to satellite
observations, model simulations provide precipitation infor-
mation for monitoring extremes, including the Global Land
Data Assimilation System (GLDAS, Peters-Lidard et al.
2007) and the Modern-Era Retrospective Analysis for
Research and Applications (MERRA, Reichle et al. 2011;
Rienecker et al. 2011). These datasets can be used for
various applications in different parts of the world
(Mo 2008; Mo et al. 2011; Yi et al. 2011; Hao et al.
2014; Livneh et al. 2010; Fox and Rowntree 2013). For
example, MERRA data has been used in many regional
drought studies across the world (e.g., AghaKouchak
2014a, b). However, they have not been evaluated
against ground-based observations over Iran.

These products differ in numerous ways because of differ-
ent processes of construction. Prior to the use of different
datasets, their quality must be evaluated over different climatic
and geographic regions of the world (Dinku et al. 2010; Kidd
et al. 2012; Barlow et al. 2006). However, the evaluation of
these land-atmospheric models has generally been limited to
the USA and other observation-rich regions of the world (Kim
et al. 2014), even though one of their promised strengths is in
their ability to provide information on land surface processes
in data-poor regions. Such analysis will give better guidance
to users in selecting a product for their particular application
and will help model producers to improve the accuracy of
model parameter fields, meteorological forcing, and various
physical processes.

Historically, Iran has suffered from significant droughts. In
a recent study, Damberg and AghaKouchak (2014) showed
that the precipitation of northwestern and eastern Iran exhibits
a drying trend. Numerous studies have been conducted on
drought in Iran (Mirabbasi et al. 2014; Sayari et al. 2013;

Tabari et al. 2012, 2013; Hosseinzadeh Talaee et al. 2014), but
only a few of them address the evaluation of global datasets
for drought monitoring. Rahimzadeh Bajgiran et al. (2008)
evaluated the National Oceanic and Atmospheric
Administration (NOAA)-AVHRR data for drought monitor-
ing in northwestern Iran. They calculated the correlation co-
efficient between the Normalized Difference Vegetation Index
(NDVI) and the Vegetation Condition Index (VCI) to precip-
itation (observation data) for 5 years of data. Their results
showed that the NDVI correlates well with precipitation var-
iation in the study area. Raziei et al. (2009) applied the
principal component analysis (PCA) to a 12-month Standard
Precipitation Index (SPI) time series derived from a gauge-
based dataset and to the National Centers for Environmental
Prediction/National Center for Atmospheric Research
(NCEP/NCAR) precipitation dataset for western Iran for the
period 1966–2000. They found two distinct subregions (in the
northwest and southwest areas of the country) with different
climatic variability, which showed satisfactory agreement be-
tween the two datasets. Raziei et al. (2011) applied the PCA to
a 12-month SPI time series using the Global Precipitation
Climatology Center (GPCC) and NCEP/NCAR precipitation
datasets for drought analysis over the entire country for the
period 1951–2005 and checked the results against 32 rain
gauges. Their results showed subregions of drought variability
that are in agreement with ground observations. However, the
time variability of the NCEP/NCAR-rotated PC scores asso-
ciated with those subregions was different from GPCC and
ground observations. They also concluded that the
NCEP/NCAR dataset shows better agreement with observa-
tions for the period 1970–2005 than for 1951–2005. Golian
et al. (2014) studied the trend and characteristics of meteoro-
logical and agricultural droughts in different conditions in
Iran. Their results show that there is a positive significant
drought trend in the northern and central parts of Iran, while
the eastern parts did not experience any significant trend. They
also studied the most severe drought that occurred between
1998 and 2001 and showed that this event coincided with a
prolonged cold phase, namely the El Nino-Southern
Oscillation.

The objective of this paper is to perform an evaluation and
comparison of real-time global model-based reanalysis pre-
cipitation dataset fromMERRA, GLDAS, and two global and
continental gauge-based gridded datasets for drought moni-
toring over Iran. GPCC provides the global gauge-based
gridded dataset. GPCC data is based on the rational merging
of data series from rain gauges built from the Global-
Telecommunication-System-based data and historic data re-
cords, from a worldwide total of more than 67,000 stations
(Schneider et al. 2014). The Asian Precipitation—Highly-
Resolved Observational Data Integration Towards
Evaluation (APHRODITE, Yatagai et al. 2012) is a daily
gridded precipitation dataset created by collecting rain gauge
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observation data across Asia. The product contributes to stud-
ies such as the evaluation of Asian water resources and has
different interpolationmethods. The datasets used in this study
will be described in detail in Section 3.

2 Study area

Iran is located in the arid and semiarid parts of the subtropical
latitudes of the Northern Hemisphere and has different climate
regions (Fig. 1). The most central part of the country is
covered by deserts. The negative water balance is the conse-
quence of the lack of summer precipitation with high evapo-
transpiration in this area. Water is often scarce in the region
and the management of water resources is a priority. The
complex topography, which includes the Zagros Range (in
the western section) and the Alborz Range (in the northern
section), plays a key role in influencing precipitation patterns
over the country. The central part of Iran is usually isolated
from the humid air masses by these mountain ranges. The
annual precipitation varies from less than 50 mm in the
southeast to more than 1600 mm in the north (the coast of
the Caspian Sea).

3 Data

Four different precipitation datasets are used in this study: one
near-real time global model-based reanalysis precipitation
dataset (MERRA), one land data assimilation product
(GLDAS), and two gridded gauge-based datasets (GPCC
and APHRODITE).

MERRA product has been designed to support the
National Aeronautics and Space Administration (NASA)’s
earth science research interests by producing a global long-
term dataset for the satellite era from 1979 to the present
(Rienecker et al. 2011). It incorporates Earth Observing
System satellite-based observations into a climate context to
improve the hydrologic cycle represented in earlier genera-
tions of reanalysis. MERRA has been developed by the
NASA’s Global Modeling and Assimilation Office. MERRA
land surface estimates reflect the time integration of surface
meteorological conditions (precipitation, radiation, wind
speed, etc.) by the short-range model forecast accumulations.
The GEOS-5 data assimilation system used for MERRA
implements the incremental analysis updates (IAU) to slowly
adjust the model states towards the observed states. MERRA
estimates of surface meteorological and land surface fields are
available at hourly time steps and at 1/2°×2/3° resolution in

Fig. 1 The study area
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latitude and longitude, respectively (Rienecker et al. 2011;
Reichle et al. 2011).

GLDAS has been developed jointly by NASA, the
Goddard Space Flight Center (GSFC), the NOAA, and the
NCEP. GLDAS makes use of the new generation of ground-
and space-based observation systems, which provide data to
constrain the modeled (CLM, Mosaic, Noah, and VIC) land
surface states. The U.S. Naval Research Laboratory (NRL)
near-real-time satellite-derived precipitation product (Turk
et al. 2000) is one of the precipitation-forcing datasets with
the spatial resolution of 0.25° and a temporal resolution of 6 h
covering the area from 60° S to 60° N. Another precipitation
forcing option that is being tested makes use of the global 2.5°
5-day NOAA Climate Prediction Center (CPC)’s Merged
Analysis of Precipitation (CMAP), which is a blending of
satellite and gauge observations. These precipitation fields
are aggregated spatially and temporally to match the
GLDAS resolutions. Current data holdings include a set of
1.0° resolution data products from the models (Rodell et al.
2004).

The GPCC (Schneider et al. 2011) performs analyses
of the global land surface precipitation distribution. Its
main task is the analysis of monthly precipitation for
the Earth’s land surface on the basis of rain gauge (in
situ) measurements. GPCC’s database comprises precip-
itation data mainly on a monthly basis from a variety of
sources. GPCC’s new global precipitation climatology
datasets are available in different spatial resolutions.
The 0.5°×0.5° longitude-by-latitude resolution (V6 full
data nobs 1901–2010) is used in this study (Schneider
et al. 2014).

For Asia, the APHRODITE project of water re-
sources has developed daily precipitation datasets with
high-resolution grids. The datasets are created primarily
with data obtained from a rain gauge observation net-
work (Yatagai et al. 2012). This dataset is available in
0.5° spatial resolution.

In this paper, we use the general name of “model datasets”
for the GLDAS and MERRA products and “gauge-based
datasets” for GPCC and APHRODITE datasets. For the peri-
od 1980–2010 (except for APHRODITE, which is 1980–
2007), the daily precipitation was accumulated to a monthly
scale for all datasets over Iran (between 25° N–40° N and 44°
E–64° E).

The reference data are from 50 quality-controlled syn-
optic stations operated by the Iranian Meteorological
Organization (IMO) for the period 1980–2010. It is like-
ly that the GPCC and APHRODITE analysis systems
have used these data for bias adjustment, as mentioned
above. Only a few stations had one or two monthly
precipitation estimates missing in the study period. The
missing data were substituted with the mean monthly
value over the study period.

4 Methods

4.1 The Standard Precipitation Index

The most essential key for drought analysis and monitoring is
to select an appropriate drought indicator. The SPI (McKee
et al. 1993) has been recommended by the World
Meteorological Organization (WMO) as the reference drought
index. Although SPI is used to estimate drought, it identifies
both nonnormal dry and humid periods. Moreover, it allows
the analysis of droughts at different temporal scales (Edwards
and McKee 1997).

The gamma distribution is commonly used to compute the
cumulative probability distribution of the long-term monthly
precipitation record. It is then transformed into the inverse of
the standard normal distribution (McKee et al. 1993). In
addition to gamma distribution, different distribution func-
tions were also used for calculating SPI (Guttman 1999;
Vicente-Serrano 2006; Hao and AghaKouchak 2013).
Following Hao and AghaKouchak (2014), an empirical prob-
ability described by Gringorten (1963) is used in this paper to
calculate the SPI. Based on SPI values, dry and wet periods
were divided into 11 categories (Table 1).

4.2 Spearman rank correlation coefficient

In this study, the Spearman rank correlation coefficient, which
is a nonparametric measure of statistical dependence between
two variables (SPI series of the gauge-reference dataset and the
four selected datasets), is used, because it excludes the effect of
marginal values and shows the strength of the associations
between the two variables. The Spearman coefficient, rs, is
the correlation coefficient of the linear regression between the
ranked variables and is obtained from the expression:

rs ¼ 1−6∑
N
i ¼ 1di

2
.
N N2−1
� � ð1Þ

where N is the number of data items in the series, and d is
the difference in statistical rank of corresponding variables. In
order to examine whether the null hypothesis (that there is no

Table 1 Dry/wet conditions categorized according to the SPI value

SPI Classification SPI Classification

0 to −0.49 Near normal 0 to +0.49 Near normal

−0.5 to −0.7 Abnormally dry +0.5 to +0.7 Abnormally wet

−0.8 to −1.2 Moderately dry +0.8 to +1.2 Moderately wet

−1.3 to −1.5 Severely dry +1.3 to +1.5 Severely wet

−1.6 to −1.9 Extremely dry +1.6 to +1.9 Extremely wet

<−2 Exceptionally dry >+2 Exceptionally wet
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association) can be rejected or not, it is necessary to calculate
the probability, which is calculated using a table of reduced
normal distribution. If

α ¼ P uj j > u rsð Þj jð Þ;with u rsð Þ ¼ rs N−1ð Þ1=2 ð2Þ

α<α0, the null hypothesis is rejected for a significance
level of α0. If a trend is detected, it will be an increasing or
decreasing trend, depending on whether rs>0 or rs<0 (del Rio
et al. 2005). The comparison between different datasets and
the reference gauge data’s SPI was performed using the
Spearman correlation for every selected pixel.

4.3 Critical Success Index

To determine how well drought could be detected, the Critical
Success Index (CSI) is defined as the portion of the correct
drought detections by each dataset. If a drought event is
estimated by using the dataset’s SPI, the SPI of the gauge
verifies the occurrence of the drought. The scoring techniques
applied here consider the following quantities for any given
SPI threshold: Z, the number of correct monitoring of nonoc-
currence; F, the number of false alarms or wrong monitoring;
M, the number of misses or nondetected events; and H, the
number of hits or correct drought monitoring. The total mon-
itoring number (gauge SPIs) is then defined as N=Z+F+M+
H. In this study, the SPI=−0.5, which is considered as the
threshold for drought events (Wilks 2006):

CSI ¼ H = F þ M þ Hð Þ ð3Þ

The selected datasets are available in different spatial res-
olutions. The resolutions of MERRA, GLDAS, GPCC, and
APHRODITE data are 1/2°×2/3°, 1°×1°, 0.5°×0.5°, and
0.5°×0.5°, respectively. In case there in a specific grid, the
arithmetic mean of the gauge data is used for the pixel. Based
on collocated gauge and gridded data, 46 pixels of MERRA,
40 pixels of GLDAS, and 48 pixels of GPCC and
APHRODITE are considered. The 2-, 3-, 6-, and 12-month
SPIs are calculated for the above four datasets and also for the
reference gauge data.

5 Results

To evaluate the performance of the four precipitation datasets
over Iran, the SPI is calculated for 2-, 3-, 6-, and 12-month
timescales at each grid point (which includes at least one
gauge). Then, the Spearman correlations for the SPI series
versus the gauge data in the selected pixels are calculated.
Table 2 shows the mean correlation coefficients of the 2-, 3-,
6-, and 12-month SPIs between the gauge reference data and

the four selected datasets. It must be noted that these results
show only the mean temporal correlations between compared
data series. The lower number of GLDAS grid cells is due to
low spatial resolution and the lack of data in some islands in
the Persian Gulf from this land surface model. The results
show that, in general, correlation coefficients increase when
increasing the SPI timescale for all datasets, but not for
GLDAS. Maybe these results for GLDAS is due to lower
spatial resolution that reduces the accuracy in estimating pre-
cipitation in each pixel when we compare with gauges which
are point scale measurements. So the accumulation of these
errors leads to worst results when SPI time period increases.

Figure 2 represents the box plots of the correlation (over all
selected grid cells) as a function of the SPI time. The results
show that the two gauge-based products (GPCC and
APHRODITE), when compared to the model-generated
datasets (MERRA and GLDAS), have very high scores,
which increase as the timescale increases. The bar line in each
box shows the median of the data. The results for GPCC are
slightly better than the results for APHRODITE. On the
other hand, the global models show poor correlations,
especially for shorter timescales. The MERRA correla-
tions are slightly greater, especially for GLDAS’ 12-
month SPIs. Although the median of correlations for
GPCC and APHRODITE are above 0.8, there are cor-
relations as low as 0.5 (+ sign in the figure), indicating
the considerable differences between compared datasets
in some of the pixels.

The spatial pattern of drought over Iran is very complex.
The western and eastern parts of the country have different
climate regimes and sometimes observed to have reverse dry
and wet periods. This situation is not unique to Iran and has
been reported in other parts of the world (Madadgar and
Moradkhani 2013; Nkemdirim and Weber 1999; Oladipo
1995; Fowler and Kilsby 2002, among others). Different wet
and dry periods in the eastern versus western areas are attrib-
uted to complicated circulation patterns that are predominant
in regions located in subtropical climatic transition areas, such
as Iran. The inverse temporal variations of 6-month SPIs for
two pixels located in eastern and western Iran show that the

Table 2 Mean correlation coefficients between reference gauge data
and selected datasets for the 2-, 3-, 6-, and 12-month SPIs

Month SPI Gauge-based datasets Global model datasets

GPCC APHRODITE MERRA GLDAS

2 0.80 0.80 0.57 0.58

3 0.84 0.82 0.58 0.55

6 0.90 0.86 0.62 0.53

12 0.91 0.86 0.64 0.53

Number of grid cells 48 48 46 40
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dryness in the west occasionally coincides with a wet period in
the east, and vice versa (Fig. 3). Actually, the western section
of the country is primarily affected by Mediterranean lows
from the west and Sudan lows from the southwest, and the
majority of annual precipitation falls in winter and spring,
while the summer is dry. On the other hand, the eastern part
of Iran is mostly dry, with less than 50 mm of annual precip-
itation. However, summer monsoons may affect the area by
providing a large amount of daily precipitation. Therefore, to
have a reliable drought-monitoring system for the entire coun-
try, the regional differences should be considered.

Figure 4 shows the spatial pattern of correlations between
3-month SPIs based on reference gauge data and four selected
datasets. It is not surprising that the gauge-based datasets
(GPCC and APHRODITE) are superior in capturing the SPI
temporal variations, with average correlations of above 0.8.
Similar results are represented in Fig. 2 for the average corre-
lation value. The correlations in the area west of the Zagros
Range were found to be better than other parts of the area for
all datasets. In comparison, between the two global model-
generated datasets (MERRA and GLDAS), MERRA shows a
slightly better performance.

Figure 5 represents the correlations for 12-month SPIs. It is
shown that, overall, the correlations for almost all datasets
tend to be higher for longer (12-month) timescales compared
to shorter (3-month) timescales. GLDAS shows lower corre-
lations for the north and central parts of the country when the
SPI timescale increases.

However, all datasets show higher correlations for grid
cells at the coast of the Persian Gulf as the SPI timescale
increases; nevertheless, at the coast of the Caspian Sea, cor-
relations decrease when the timescale increases. The afore-
mentioned problem could be related to the accumulation of
errors in the coast of the Caspian Sea, as discussed in Katiraie-
Boroujerdy et al. (2013).

As mentioned above, for the entire country of Iran, except
for a narrow strip over the coast of the Caspian Sea and a small
area in the southeastern section of the country, which have
summer rainfall, the largest portion of annual precipitation
occurs in a 6-month period (primarily winter and spring).
Thus, the small amount of precipitation (which is negligible)
in other months causes a considerable variation in SPIs.
Occasionally, these small amounts of precipitation are not
captured by the models, and therefore, the correlations can

Fig. 2 Box plots summarizing
the evaluation results for the
temporal correlation between the
reference gauge dataset and four
datasets (MERRA, GLDAS,
GPCC, and APHRODITE).
Correlation coefficients are
averaged over all selected grid
points over Iran. The red line
shows the median of quantities.
Box: 25th and 75th percentiles;
whiskers: 10th and 90th
percentiles;+ show the maximum
and minimum values

Fig. 3 The time series of
reference gauge data 6-month SPI
for a pixel in western (red) and
eastern (blue) Iran for the study
period
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be reduced considerably. Therefore, the 6-month SPIs for the
six wet months (November–April) for selected pixels are
considered, and the correlation coefficients are calculated.
The average of correlations for GPCC, APHRODITE,
MERRA, and GLDAS are 0.93, 0.88, 0.67, and 0.59, respec-
tively. The wet season correlations show better agreements
with observations in comparison to the wet and dry season
results (Table 2) for all datasets.

To demonstrate how well each dataset can monitor
drought, the CSI is calculated for the datasets and for the 2-,
3-, 6-, and 12-month periods. Table 3 shows the mean CSIs
over the selected pixels for various SPIs. The result
shows that GPCC and APHRODITE captured the dry
periods better than the two others for all timescales.
Maximum CSIs were approximately 58–69 % for the 2-
to 12-month SPIs for GPCC, and minimum CSIs were
~36–40 % for the 12- to 2-month SPIs for GLDAS data.
GLDAS is the only dataset that has higher CSI values at
shorter timescales. Actually, GLDAS data is more erro-
neous in comparison with other datasets.

Figure 6 gives the box plots of the mean CSI (over all
selected grid cells) as a function of the SPI timescale. This
figure also illustrates that the GPCC shows the best perfor-
mance and GLDAS has the poorest. The CSI values are not as
good as the correlations (Fig. 2).

Figure 7 shows the spatial pattern of CSIs (in percentages)
of monitoring dry periods for all datasets based on reference
gauge data as a function of timescale. Confirming the previous
results, Fig. 7 illustrates that the GPCC and APHRODITE
reveal dry periods better than the global model datasets, due to
the fact that these datasets use the reference gauge data. The
GPCC has better performance than APHRODITE. The results
show that the dry period prediction by MERRA is more
reliable than the prediction given by GLDAS. However, the
CSIs of GLDAS over the eastern and southeastern areas are
found to be slightly better as the timescale increases; they
decrease with timescale over the central and northern portions
of the area. The dry period prediction skill by MERRA over
the coast of the Caspian Sea decreases as the timescale in-
creases. It should be noted that the CSI increase in the south-
ern parts of the country, especially over a region from south-
west to east, is shown in Fig. 7 (perpendicular to the Zagros
Range). The GPCC and APHRODITE give poor results over
the southern part of the country (the Hormoz Strait) for short
timescales, which improves as the timescale increases. On the
other hand, APHRODITE, which captures the dry periods
adequately in the northern section of the country, gets worse
when the timescale increases.

Droughts develop slowly and have impacts on a region
once water shortage occurs. Hence, not only is the duration of

Fig. 4 Spatial distribution of
temporal correlation coefficients
between the 3-month SPI gauge
dataset and MERRA, GLDAS,
GPCC, and APHRODITE
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the drought very important for a variety of applications, so is
the detection, especially for decision making and water man-
agement. Because most parts of the country are affected by the
6-month wet period, the 6-month SPI for the moderate dry
category with at least 3 months in duration is selected to
evaluate the ability of different datasets in recognizing drought
onset. A drought lasting longer than 3 months was chosen
because a duration of more than that time frame in a year can
cause serious damages in different sectors (water manage-
ment, agriculture, etc.). Figure 8 shows how well (by percent-
ages) each dataset can detect the onset of 6-month moderate
droughts with durations of at least 3 months. All datasets show
better performance over the area west of the Zagros Range. On
the other hand, almost all datasets (except GPCC) demonstrate

poor results for the coast of the Caspian Sea. The gauge-based
datasets superiorly monitor drought onset over all regions.
Comparing the southern half of Iran to the northern half,
GLDAS shows better detection performance over the south-
ern part. MERRA detected the onset of moderate droughts
with a detection rate between 16 and 85 %. Although
APHRODITE can detect the onset of a drought in most grid
cells (between 25 and 100 %), it is unsuccessful in the western
area of the Caspian Sea. GPCC has the best score (between 40
and 100 %) in comparison with the other products.

6 Conclusion

The reliability of precipitation information from two gauge-
based (GPCC and APHRODITE) databases and two model-
generated global datasets (MERRA and GLDAS) for
hydroclimatological monitoring, especially drought, is exam-
ined and quantified over Iran. The study area includes semi-
arid and hyperarid regions where these datasets have not been
evaluated for drought monitoring. The “ground truth” is from
the quality-controlled Iranian Meteorological Organization
gauge dataset, which includes 50 long-term records. The time
period of 1980–2010 is considered for the analysis, except for
APHRODITE, for which data are only available until 2007.

Table 3 The mean CSI (%) over the selected pixels for different
datasets

CSI (%) 2-month
SPI

3-month
SPI

6-month
SPI

12-month
SPI

MERRA 39.9 41.1 43.7 45.1

GLDAS 39.6 37.6 38 36.3

GPCC 58.2 60.3 68.1 69.4

APHRODITE 54.3 57 62.3 61.4

Fig. 5 Same as Fig. 4, but for 12-
month SPIs
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Fig. 6 Box plot of the CSI mean
(over selected grid cells) as a
function of SPI timescale for the
four datasets (MERRA, GLDAS,
GPCC, and APHRODITE).
Again, the red line shows the
median of quantities. Box: 25th
and 75th percentiles; whiskers:
10th and 90th percentiles;+ show
the maximum and minimum
values

Fig. 7 The spatial distribution of
the CSI for all datasets as a
function of SPI timescales
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The 2-, 3-, 6-, and 12-month SPIs are calculated to assess
drought conditions in selected pixels. In addition, the compar-
ison among different datasets and reference gauge data was
performed using the Spearman rank correlation for selected
pixels. As one expects, the results indicate that the two gauge-
based products (GPCC and APHRODITE) show superior
scores compared to the global model datasets (MERRA and
GLDAS). The performance score improves as the timescale
increases. The maximum mean correlation (for the selected
pixels) for the 12-month SPI is 0.91 for GPCC, and the
minimum mean correlation is 0.53 for GLDAS. On the other
hand, the global models show poor correlations, especially for
shorter timescales. The spatial patterns of correlations in the
west of the Zagros Range were found to be better than in other
parts of the region for all datasets. GLDAS shows lower
correlations for the north and central parts of the country when
the SPI timescale increases. On the other hand, all datasets
show higher correlations for grid cells on the coast of the
Persian Gulf as the SPI timescale increases. The precipitation
records show that Iran’s climate is dominated mostly by
precipitation in the winter and spring months. Therefore, the
6-month SPIs for the six wet months of the year (November–
April) are considered. The averages of wet season correlations
improved in comparison with all data results, and the results
were consistent in all data products.

To show the performance of the datasets for drought mon-
itoring, the CSI is calculated for the 2-, 3-, 6-, and 12-month
periods with the gauge dataset as a reference. The results show
that GPCC and APHRODITE captured the dry periods better
than the two other datasets for all timescales. GLDAS is the
only dataset that the CSI values do not improve when time-
scales increase. The results show that the dry period prediction
by MERRA is more reliable than that by GLDAS. Although
the CSIs of GLDAS over the eastern and southeastern areas
are slightly greater in comparison with other parts of the
country, they decrease with increasing timescales over the
center and northern regions. The CSIs of MERRA increase
in the southern parts of the country, especially over a region
from the southwest to the east, perpendicular to the Zagros
Range as the timescale increases. It seems that this needs more
investigations. GPCC and APHRODITE give poor results
over the southern portion of the country (the Hormoz Strait)
for short timescales, but the results improve as the timescale
increases. However, APHRODITE shows different results in
the northern section of Iran, where it captures dry periods
adequately in short timescales but shows lower performance
when the timescale increases. In addition, the detection of the
onsets of 3 months of persistent, moderate droughts for each
dataset was compared with the gauge data. The results show
that all datasets have better performance west of the Zagros

Fig. 8 Detection of the 6-month
moderate dry onset with a
persistency of at least 3 months
(in percent)
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Range, but poor performance over the coast of the Caspian
Sea. It should be noted that the superior performance of
gauge-based datasets is likely to be influenced by the fact that
some of the gauges from the IMO used in this study are also
the gauges whose data has been used in the GPCC. In the
southern half of the country, GLDAS has better performance
than in the northern half. It is worth mentioning that the
regional differences in the performance of various datasets
are highlighted here and need further investigations. As men-
tioned earlier, the objective of the present study is the evalu-
ation and comparison of various gridded based global precip-
itation datasets for drought monitoring over Iran. The quality
of each dataset depends on many factors such as interpolation
techniques, sources of data, availability of ground-based
dataset, and grid resolution, among others. This study shows
better performance of the GPCC dataset in general; however,
more studies are required to investigate the differences among
the datasets and the reason for the performance variations that
is beyond the objectives of this study.

As shown in this paper, the GPCC is able to show the dry
and wet periods reasonably well from 2- to 12-month time-
scales. Unfortunately, this dataset is not available in near real
time (currently, GPCC data are available with a delay of
approximately 2 years). If near real-time analysis is not criti-
cal, we suggest that the GPCC is the best reference dataset for
long-term historical climate studies. However, for near real-
time drought analysis, the GPCC data is not suitable due to its
latency. On the other hand, MERRA is a reasonable alterna-
tive for near real-time drought analysis and prediction over
Iran when GPCC or other gauge-based datasets are not avail-
able. However, the MERRA data does not exhibit good per-
formance over the coast of the Caspian Sea.
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