
Flood Forecasting and Inundation Mapping Using HiResFlood-UCI and
Near-Real-Time Satellite Precipitation Data: The 2008 Iowa Flood

PHU NGUYEN, ANDREA THORSTENSEN, SOROOSH SOROOSHIAN,
KUOLIN HSU, AND AMIR AGHAKOUCHAK

Department of Civil and Environmental Engineering, University of California, Irvine, Irvine, California

(Manuscript received 30 October 2014, in final form 20 January 2015)

ABSTRACT

Floods are among the most devastating natural hazards in society. Flood forecasting is crucially important in

order to provide warnings in time to protect people and properties from such disasters. This research applied the

high-resolution coupled hydrologic–hydraulic model from the University of California, Irvine, named

HiResFlood-UCI, to simulate the historical 2008 Iowa flood. HiResFlood-UCI was forced with the near-real-

time Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks–Cloud

Classification System (PERSIANN-CCS) and NEXRAD Stage 2 precipitation data. The model was run using

the a priori hydrologic parameters and hydraulic Manning n values from lookup tables. The model results were

evaluated in two aspects: point comparison using USGS streamflow and areal validation of inundation maps

usingUSDA’s flood extentmaps derived fromAdvancedWide Field Sensor (AWiFS) 56-m resolution imagery.

The results show that the PERSIANN-CCS simulation tends to capture the observed hydrograph shape better

than Stage 2 (minimum correlation of 0.86 for PERSIANN-CCS and 0.72 for Stage 2); however, at most of the

stream gauges, Stage 2 simulation provides more accurate estimates of flood peaks compared to PERSIANN-

CCS (49%–90% bias reduction from PERSIANN-CCS to Stage 2). The simulation in both cases shows a good

agreement (0.67 and 0.73 critical success index for Stage 2 and PERSIANN-CCS simulations, respectively) with

the AWiFS flood extent. Since the PERSIANN-CCS simulation slightly underestimated the discharge, the

probability of detection (0.93) is slightly lower than that of the Stage 2 simulation (0.97). As a trade-off, the false

alarm rate for the PERSIANN-CCS simulation (0.23) is better than that of the Stage 2 simulation (0.31).

1. Introduction

Floods are among themost devastating natural hazards

in terms of the number of people affected and economic

loss (Ashley and Ashley 2008; Cook andMerwade 2009).

Figure 1, which was produced using data from the Center

for Research on the Epidemiology of Disasters (CRED;

www.emdat.be), shows the worldwide flood statistics

from 1950 to 2010. There was a significantly increasing

trend in number of floods occurring, number of deaths,

number of people affected, and economic damage over

the past half century. In the 1990s, approximately 100000

people died and 1.4 billion people were affected (Fig. 1)

as a result of the severe floods that occurred in China.

Between 1987 and 1997, 44% of all floods happened in

Asian countries, causing 288000 deaths and economic

damage of $136 billion (U.S. dollars) (WMO 2011). In

2011, floods were the third-most severe cause of both

deaths and damage costs for any natural hazard in the

United States (National Weather Service 2012). Climate

change leads to an increase in precipitation intensity in

many parts of the world, which may cause more severe

floods (Solomon et al. 2007).

The primary driver of a regular flood over a region is

extreme rainfall, while other types of floods can be caused

by dam breaks, high tides, and snow melting. Many ef-

forts have been made from various organizations across

the world to prevent/mitigate the impact of floods on

society; however, modeling and forecasting floods caused

by extreme precipitation, especially flash floods, is still

very challenging (Borga et al. 2011). The difficulty exists

with two main aspects: modeling techniques and data

acquisition.

Hydrologic and hydraulic models have been used to

model floods driven by rainfall data from various
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sources: gauges, radars, satellites, and numerical fore-

cast models. Gauge rainfall data can be themost reliable

as ‘‘true observation,’’ but it is ‘‘point’’ data and difficult

to extrapolate over a relatively large area (Collier 2007).

Further, the gauge observation network is neither dense

enough nor uniform in global scale, especially in rural,

mountainous areas where floods occur more often. Ra-

dars have been used to estimate precipitation for flood

warnings, but they are expensive to operate and their

coverage is also limited, particularly in mountainous

regions (Sorooshian et al. 2014).

Remote sensing technologies have come up since the

1960s (Jensen 2000) as having the greatest potential for

near-real-time precipitation estimation in global-scale

flood warnings with high resolution (i.e., 4km). The re-

cently developed satellites by NASA [i.e., Tropical Rain-

fallMeasuringMission (TRMM)],NOAA[Geostationary

Operational Environmental Satellite (GOES)], and other

international organizations offer great opportunities for

developing global flood warning systems. Those systems

include the Global Flood and Landslide Monitoring

system by NASA (Hong et al. 2007a), the Global Flash

Flood Guidance System (GFFGS) developed by the

U.S. Hydrologic Research Center, the Global Flood

Alert System (GFAS) developed in Japan by the In-

ternational Centre for Water Hazard and Risk Man-

agement under the auspices of the United Nations

Educational, Scientific, and Cultural Organization

(ICHARM; www.icharm.pwri.go.jp/research/ifas/), and

the Global Flood Monitoring System (http://flood.umd.

edu/) by theUniversity ofMaryland (Wu et al. 2014). All

the systems use hydrologic models at kilometer resolu-

tions with or without one-dimensional routing schemes

forced with satellite precipitation data to provide basic

warnings on where there is the potential for floods to

occur. None of them can show the details of the floods,

for example, spatiotemporal distribution of water depth

and flow velocity at river scale, which are crucially im-

portant in flood analysis and warnings.

Together with the rapid evolution in remote sensing

technologies, more data with larger coverage and finer

spatiotemporal resolution have been available for use.

Furthermore, with numerous contemporary and future

missions such as NASA’s Global Precipitation Measure-

ment (GPM; launched in 2014) andNASA’s SoilMoisture

Active Passive (SMAP; launched in 2015), NASA offers

the unique opportunity to better understand the physics of

floods in order to develop a new generation of models,

which will improve global flood forecasting. Moreover,

powerful computing systems motivate modelers to use

high-resolution hydrologic–hydraulic models to simulate

the water flow in rivers and flood plains as realistically as

possible to protect people and mitigate the damages of

their properties caused by extreme flood hazards.

Satellite-based surface water measurements have

been widely used in flood observation and forecasting.

Information from satellite sensors such as the Landsat

Thematic Mapper (TM), Advanced Wide Field Sensor

(AWiFS), Moderate Resolution Imaging Spectroradi-

ometer (MODIS), Advanced Synthetic Aperture Radar

(ASAR), Advanced Microwave Scanning Radiometer

for Earth Observing System (AMSR-E), and Ocean

FIG. 1. Flood statistics from 1950 to 2010 using data from CRED.
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Topography Experiment (TOPEX)/Poseidon radar al-

timeter can be used to estimate flood inundation, water

level, and river discharge. Applications of satellite-based

surface water measurements can be found in Hossain

et al. (2014a,b), Khan et al. (2014), Alsdorf et al. (2007),

Bjerklie et al. (2005), Brakenridge et al. (2007), Bates

et al. (1997), and Behrangi et al. (2011). The near-real-

time (NRT) Global Flood Mapping system recently

developed by NASA for near-real-time global flood

monitoring and its archived data will be a great resource

for validating the proposed system (http://oas.gsfc.nasa.

gov/floodmap). NASA’s Surface Water Ocean Topog-

raphy (SWOT; to be launched in 2020) will provide

global river discharge observation (Wu et al. 2014),

which is promised to be a revolutionary resource for

flood observation and forecasting in addition to valida-

tion of flood modeling at a global scale.

The Iowa Flood Center (IFC) hosted a NASA GPM

validation field campaign in the spring of 2013 known as

Iowa Flood Studies (IFloodS). The focus of the IFloodS

campaign was to explore advantages and weaknesses of

satellite precipitation products in terms of their appli-

cation toward understanding and forecasting hydrologic

processes (Krajewski et al. 2013).

This paper presents an application of the recently de-

veloped high-resolution coupled hydrologic–hydraulic

model from the University of California, Irvine (HiRes-

Flood-UCI; Nguyen et al. 2012, 2013) with near-real-time

satellite precipitation data [Precipitation Estimation from

Remotely Sensed Information Using Artificial Neural

Networks–Cloud Classification System (PERSIANN-

CCS)] for flood forecasting and inundation mapping

in the Cedar River in Iowa. The system was validated

for the historical 2008 Iowa flood event using U.S. De-

partment of Agriculture (USDA) flood extent maps

derived from the high-resolution AWiFS imagery and

observations from U.S. Geological Survey (USGS)

streamflow gauges along the main channel of the Cedar

River. Themodeling framework uniquely integrates areal

imagery into a coupled hydrologic–hydraulic modeling

framework and offers a unique avenue for validation

and verification of inundation models. This work aims to

supplement the efforts of the IFloodS campaign through

application of HiResFlood-UCI to a major flood event

within the IFloodS domain. The application is done in the

context of using near-real-time satellite precipitation data

in a forecasting environment.

2. HiResFlood-UCI

HiResFlood-UCI is a high-resolution coupled

hydrologic–hydraulic model based on the heritage of the

National Weather Service’s Hydrology Laboratory

Research Distributed Hydrologic Model (HL-RDHM;

National Weather Service 2011) and BreZo (Begnudelli

and Sanders 2006) for hydraulic flood modeling (in-

undation mapping, flow depth, and velocity estimation)

purposes.

Detailed description of HL-RDHM can be found in

Koren et al. (2004) and National Weather Service

(2011). HL-RDHM is a distributed hydrologic model

that was designed and implemented for the entire con-

tiguous United States (CONUS) at three spatial reso-

lutions of 1 Hydrologic Rainfall Analysis Project

(HRAP; ;4 km), 1/2 HRAP, and 1/4 HRAP. HL-

RDHM structure can also be applied for any cell reso-

lution and time step length. The heart of HL-RDHM is

the Sacramento Soil Moisture Accounting (SAC-SMA)

rainfall–runoff model. In SAC-SMA, unlike other dis-

tributed models with fixed values for subdomains or the

entire domain, an advanced algorithm was designed to

derive a priori parameters from soil and land use data.

BreZo is a hydraulic model that solves the shallow-

water equations using a Godunov-type finite volume

method with an unstructured grid of triangular cells.

A detailed description of the model can be seen in

Begnudelli and Sanders (2006). One of the primary ad-

vances of the model is that it was designed for working

with an unstructured grid of triangular cells, which

enables the model to simulate the water flow in varying

shapes of the channel–river systems. The model has

been applied successfully to simulate dam breaks

and flood inundation (Begnudelli and Sanders 2007;

Sanders 2007).

The coupled model uses HL-RDHM as a rainfall–

runoff generator and replaces the routing scheme of

HL-RDHM with the 2D hydraulic model (BreZo) for

providing more detailed information of flooding at river

scale, for example, flood depths, flooded maps, and flow

velocity, which are essential for improved flood warnings.

A semiautomated technique of unstructured mesh gen-

eration using Triangle software (Shewchuk 1996) andEsri

ArcGIS was developed for the hydraulic component of

HiResFlood-UCI. Such mesh has a high resolution at

decameters in areas along the river network and coarse

resolution for the rest of the simulation domain, in order

to simulate flooded areas in detail while keeping the

computational costs to a bare minimum. HiResFlood-

UCI can be run using either calibrated parameters for

areas with streamflow observation available or the a

priori hydrologic parameters for the CONUS from the

NWS and hydraulic Manning n values from lookup ta-

bles. The model was successfully implemented for Baron

Fork at Eldon, OK (ELDO2), one of the catchments in

the Distributed Model Intercomparison Project, phase 2

(DMIP 2; Nguyen et al. 2012), and the upper Little
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Missouri River for simulating the historical flash flood

event in June 2010 (Nguyen et al. 2013).

3. Near-real-time satellite precipitation
PERSIANN-CCS

PERSIANN-CCS (Hong et al. 2004) is a near-real-time

satellite precipitation product. Precipitation is estimated

by algorithms developed by the scientists at the Center for

Hydrometeorology and Remote Sensing (CHRS) at the

University of California, Irvine. The product has high

spatiotemporal resolution at hourly, 0.048 3 0.048, quasi-
global coverage from 608N to 608S. PERSIANN-CCS al-

gorithms estimate precipitation from geosynchronous

Earth orbit infrared (GEO-IR) imagery using artificial

neural networks (ANNs) and cloud classification system

techniques. More detailed descriptions on the de-

velopment of PERSIANN-CCS algorithms, product val-

idation, and application can be found in Hsu et al. (1997,

2013), Sorooshian et al. (2000), and Hong et al. (2004,

2007b). Since PERSIANN-CCS is available in near–real

time with about a 1-h delay, it is suitable for use in pro-

viding flood warnings to the public and flood disaster

managers (Sorooshian et al. 2014; Nguyen et al. 2014).

This is particularly true for larger river systems, such as the

Cedar River, where the 1-h time latency has much less of

an impact on lead time compared to smaller rivers and

those prone to flash floods.

4. Implementing HiResFlood-UCI with
PERSIANN-CCS data for Cedar River

a. Domain and data used

The Cedar River is a 544-km river in Minnesota and

Iowa with a drainage area of approximately 20 000km2

(Fig. 2). The Cedar River flows through two major cities

(Waterloo andCedar Rapids) in Iowa.Agriculture is the

main land use in the Cedar River basin (Linhart and

Eash 2010).

The digital elevation model (DEM) at 30-m resolu-

tion with vertical accuracy of 62.44m in root-mean-

square error (RMSE) was downloaded from USGS’s

National Hydrology Dataset (NHD). Near-real-time

global PERSIANN-CCS precipitation data at 0.048
resolution are retrieved from the CHRS’s server. The

original PERSIANN-CCS is in geographical projection

(latitude–longitude), so it is necessary to convert the

data to the HRAP using the code provided by the NWS

(available at www.nws.noaa.gov/oh/hrl/dmip/lat_lon.

txt) for HiResFlood-UCI.

b. Model setup

HiResFlood-UCI was set up for the Cedar River

watershed following the procedure in Nguyen et al.

(2014). HL-RDHM was set at an hourly time step,

1-HRAP resolution. HL-RHDMwas implemented with

the a priori parameters (Koren et al. 2003) from NWS

and had a spinup period of over 2 yr (starting in early

2006) leading up to the major flooding period. The hy-

draulic component, BreZo, was run beginning a month

prior to the main flood. This time period incorporated

several precipitation events that preceded the major

flood and allowed for the channels in the model to reach

initial flow conditions.

From USGS 30-m DEM, Cedar River watershed was

delineated into 29 subcatchments using ArcGIS terrain

processing tools (Fig. 3). The unstructured triangular

mesh was designed using Triangle software (Shewchuk

1996) with buffering sizes and area constraints described

in detail in Table 1. The highest resolution along the

FIG. 2. Cedar River watershed, USGS streamflow gauge IDs, and locations in the Cedar River watershed used for validation.
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river network andwithin 100m from the river center line

is 30m. Manning n values for the channel and floodplain

of Cedar River were selected from Chow’s lookup table

(Chow 1959) at 0.045 and 0.060, respectively.

5. Application of the model for simulating the 2008
Iowa flood

a. Description of the 2008 Iowa flood

A sweep of several storms associated with sequential

frontal system passages over the midwestern United

States was the primary contributor to the historic 2008

flood. The state of Iowa averaged 167mm of rain above

normal for the period from 29 May to 12 June. This

occurred following an unusually heavy snowpack during

the winter of 2007/08, which provided enough snowmelt

to saturate soils and elevate river levels prior to the ar-

rival of the late spring storms.

The 2008flood is the largest floodon record for theCedar

River basin, and it had a peak discharge representing

a 0.2%–1% annual recurrence at the Cedar River stream

gauge near the outlet (Linhart and Eash 2010). The

streamflow measured by USGS’s stream gauge on the Ce-

darRiver atCedarRapids reached to 3964m3s21, twice the

maximum record of 110yr (Smith et al. 2013).

b. Data collection

Precipitation from PERSIANN-CCS from 29 May to

25 June 2008 was collected to use as forcing data in the

simulation. Additionally, real-time hourly gridded radar-

estimated precipitation with no bias removal (4km)

NEXRAD Stage 2 or ‘‘RAD’’ data for the same time

period was obtained from the University Corporation

for Atmospheric Research (UCAR; http://data.eol.ucar.

edu/codiac/dss/id521.006) for a comparison to the sat-

ellite product. The real-time hourly digital precipitation

(HDP) radar data in this Stage 2 product were estimated

by the WSR-88D product generator at the National

Centers for Environmental Prediction (NCEP). Stage 2

rainfall data were selected for comparison because they

are also real-time products that could be used in a

forecasting setting (albeit limited to the United States).

Figure 4 shows a side-by-side comparison of pre-

cipitation totals for the 2008 flood event for both prod-

ucts. Overall, both products exhibit similar precipitation

total patterns, with the PERSIANN-CCS producing less

precipitation than Stage 2. It can be seen that both

products have an area of maximum total precipitation

located upstream of the Cedar Rapids area, where the

most damaging flooding in the basin occurred. The total

basin average precipitation during the 2008 flood event

for PERSIANN-CCS was 378.89mm and for Stage 2

was 458.89mm.

Using the Stage 2 precipitation as a baseline, spatial

statistics were calculated between PERSIANN-CCS

and Stage 2. Figure 5 highlights these spatial relationships.

The highest RMSE is found in the central basin, which

FIG. 3. The 30-m DEM and watershed delineation results including streams, subcatchments, and point-source locations.

TABLE 1. Mesh design for BreZo.

Buffer zone Distance from river (m)

Mesh resolution

Size (m) Area (m2)

1 100 30 450

2 500 50 1250

3 1000 100 5000

4 5000 500 125 000

5 20 000 1000 500 000
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coincides with the location of the maximum total pre-

cipitation band. Areas with the highest positive biases are

detected in the southern and western regions of the basin,

and areas with the strongest negative biases are exhibited

throughout the northern and central basin. The correla-

tion coefficient pattern closely mimics that of RMSE,

with the lowest correlation being in the central basin.

Observations from seven USGS streamflow gauges

scattered across the basin were used to analyze the

simulated hydrographs produced by HiResFlood-UCI.

Locations and identifications (IDs) of these gauges are

shown in Fig. 2.

This research used the AWiFS flood extent data from

the USDA. Johnson and Lindsey (2008) suggest AWiFS

(56-m resolution) as an excellent compromise between

Landsat (30-m resolution but not frequent enough) and

MODIS (250-m resolution but more frequent). AWiFS

imagery is taken from the AWiFS sensor on board the

Indian Remote Sensing Satellite (IRS-P6). AWiFS

imagery has 56-m resolution at nadir with a swath of

740km and a 5-day revisit (Indian National Remote

Sensing Agency 2003). AWiFS imagery has been suc-

cessfully incorporated into other USDA applications

with high-resolution requirements, particularly agricul-

ture monitoring (Boryan et al. 2011). The AWiFS images

over the Iowa area on 29 May and 16 June 2008 were

classified into flood/nonflood and then converted into

vector format (shapefile) byUSDA. The data in shapefile

format were downloaded from the USGS Hazards Data

Distribution System (HDDS; http://hddsexplorer.usgs.

gov/data). Fig. 6 illustrates the magnitude of the 2008

Iowa flood in the Cedar River basin as seen by AWiFS.

As the figure shows, most of the basin’s streamflow

conditions are characterized with these images, except

the northern-most upstream segment is not fully cov-

ered. This was of little concern, as the most impacted

area is the river toward the southern half of the basin,

particularly near the Cedar Rapids area. This preclassified

FIG. 4. Total precipitation during the event from 0000 UTC 29 May to 2300 UTC 25 Jun 2008: Stage 2 and PERSIANN-CCS.

FIG. 5. Comparison statistics between Stage 2 and PERSIANN-CCS hourly precipitation from 0000 UTC 29 May to 2300 UTC 25 Jun

2008: (from left to right) RMSE, BIAS [unitless, calculated from Eq. (5)], and CORR.
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product depicts flooded areas that are noisy and dis-

connected from the main channel. While these classifi-

cations may be correct (i.e., small ponds), both the

preflood and postflood images were manually cleaned

such that only pixels of the main river channel and its

tributaries were left. This allows for a more straight-

forward analysis of the model’s performance of flooding

the actual river by negating any influence the isolated

ponds (not connected to the main river) would have on

performance metrics.

c. Performance metrics

The AWiFS areal imagery of flood inundation was

used to validate the results from the model. The pre-

dicted flooded maps were interpolated into 56-m reso-

lution regular grid in order to be spatially comparedwith

the AWiFS images.

Three metrics—probability of detection (POD), false

alarm ratio (FAR), and critical success index (CSI)—

were used with three statistics (Table 2): hits (having

flood in both AWiFS and predicted by HiResFlood-

UCI), misses (flooded inAWiFS but not inHiResFlood-

UCI), and false alarms (not flooded in AWiFS but

flooded in HiResFlood-UCI).

Using the statistics of hits, misses, and false alarms in

Table 2, the POD, FAR, and CSI were calculated sim-

ilarly to Gourley et al. (2012):

POD5
hits

hits1misses
, (1)

FAR5
false alarms

hits1 false alarms
, (2)

and

CSI5
hits

hits1misses1 false alarms
. (3)

The model-predicted results were also compared with

the USGS’s hourly observed streamflow at the gauges

along the river network using three common metrics:

RMSE, BIAS, and Pearson correlation coefficient

(CORR). RMSE, BIAS, and CORR were computed:

RMSE5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n
�
n

i51

(qo,i 2qs,i)
2

s
, (4)

BIAS5

�
n

i51

(qs,i 2 qo,i)

�
n

i51

qo,i

, (5)

and

CORR5

�
n

i51

(qo,i2 qo) �
n

i51

(qs,i 2 qs)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�
n

i51

(qo,i 2 qo)
2

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�
n

i51

(qs,i 2 qs)
2

s , (6)

where n is the total number of observations, qo is the

observed discharge (m3 s21), qs is the simulated discharge

FIG. 6. AWiFS images of preflood (1 Jun 2008) and flood (16 Jun 2008) from USDA.

TABLE 2. Contingency table used in flooded map validation.

AWiFS image

Flooded Not flooded

Predicted by

HiResFlood-UCI

Flooded Hit False alarm

Not flooded Miss —
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(m3 s21) for each time step i, qo is the mean of the ob-

served values, and qs is the mean of the predicted values.

d. Results and discussion

1) STREAMFLOW VALIDATION

Figure 7 shows the simulated and observed hydro-

graphs at each of the seven USGS gauge locations in the

Cedar River basin during the 2008 Iowa flood event.

Hourly basin average precipitation as captured by Stage

2 radar and PERSIANN-CCS is also highlighted in

Fig. 7. The major flood level at each gauge location as

defined by the NWS is plotted as well. In general, both

simulations replicate the observed streamflow well in

terms of event timing, but struggle in terms of peak

magnitude. The PERSIANN-CCS simulation catches

the general shape of the observed streamflow, as evi-

denced by high correlation values in Table 3, but un-

derestimates flowmagnitude overall. On the other hand,

the Stage 2 simulation overestimates peak magnitude at

FIG. 7. (top left)Average precipitation. (top right and below)USGS observed hydrographs andmodel results frommodel with Stage 2 and

PERSIANN-CCS precipitation data.
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some locations while underestimating at others and

features sharper, more frequent peaks than the obser-

vation and the PERSIANN-CCS simulation.

Statistics in Table 3 highlight the differences in hy-

drographs produced throughout the basin when using

Stage 2 radar data versus PERSIANN-CCS data as they

compare to observed USGS streamflow gauge mea-

surements. RMSE values between the two simulations

are comparable, but the Stage 2 simulation has a lower

RMSE than the PERSIANN-CCS simulation at all

gauges, except at the outlet. In nearly all of the cases,

simulations using Stage 2 and PERSIANN-CCS have a

negative bias, with the PERSIANN-CCS forced simu-

lation having a larger bias. Since the model was run

using a priori parameter grids, it is possible that with

calibration, such bias could be reduced. For correla-

tion, both simulations show a strong performance

throughout the basin, with the lowest value for either case

at 0.72. The PERSIANN-CCS simulation slightly out-

performed Stage 2 at all stream gauge locations except at

the outlet in terms of correlation. This outcome comes

with a caveat in that for many of the stream gauge loca-

tions, the Stage 2 simulation exhibits a streamflow mag-

nitude closer to that of the observations for the duration of

the period, but it has higher-frequency variability than

the PERSIANN-CCS simulation. By the nature of the

Pearson correlation coefficient calculation, these higher-

frequency variations (even if they are very small in mag-

nitude) will be penalized. In fact, the rise and recession

rates during the flood event appear to be better captured

in the Stage 2 simulation, even if peak timing tends to

be early.

2) INUNDATION MAP VALIDATION

The model not only can provide a step-by-step picture

of the flooded conditions, but it can also highlight the

maximum impact (e.g., maximum depth and maximum

flow velocity) at each location for an event. Figure 8 is

one example of such an image, as it shows the maxi-

mum depth experienced during the flood event for the

entire basin. Such information is not available from the

widely used HL-RDHM, and it is a unique feature of

the HiResFlood-UCI. The validation of the model

simulation against the AWiFS product is carried out

for a flood map at a certain time step. Also highlighted

in Fig. 8 is the area that was selected for validation

(the ‘‘extended’’ Cedar Rapids area). This area was

chosen for its high flood impact and complete AWiFS

coverage.

The cleaned, AWiFS imagery-based preflood and

flood inundation maps for Cedar Rapids and the sur-

rounding area are shown in Fig. 9. Figure 10 shows the

simulated inundation maps of the corresponding area

for the Stage 2 and PERSIANN-CCS forced simulations

for the flood on 16 June 2008.

Figure 11 shows the hit–miss–false alarm map for the

simulations using each precipitation product. Using the

AWiFS inundation maps as ‘‘truth,’’ the Stage 2 simu-

lation overestimated the flood extent as exemplified by

more false alarm pixels than missed pixels. On the other

hand, the PERSIANN-CCS simulation tends to have

more misses than the Stage 2 simulation. This is a

somewhat expected by-product of PERSIANN-CCS

showing less precipitation in the flood event total pre-

cipitation map (Fig. 4). In fact, previous satellite vali-

dation studies indicate that satellite precipitation

datasets tend to underestimate precipitation, especially

at higher rain rates (AghaKouchak et al. 2011, 2012).

This can explain the underestimation of peak discharge

relative to the Stage 2. However, the results show that

satellite observations still provide comparable flood es-

timates and inundation maps.

TABLE 3. Statistics of event simulations with Stage 2 and PERSIANN-CCS precipitation data comparing with USGS observed streamflow.

USGS streamflow gauge Precipitation input RMSE (m3 s21) BIAS CORR

05457700 Stage 2 77.79 20.08 0.85

PERSIANN-CCS 119.84 20.51 0.87

05458000 Stage 2 46.50 20.14 0.72

PERSIANN-CCS 54.06 20.50 0.87

05458300 Stage 2 233.32 20.28 0.87

PERSIANN-CCS 256.97 20.48 0.97

05458500 Stage 2 139.07 20.05 0.79

PERSIANN-CCS 151.43 20.54 0.86

05464000 Stage 2 353.32 20.22 0.94

PERSIANN-CCS 493.58 20.39 0.99

05464500 Stage 2 328.10 20.13 0.96

PERSIANN-CCS 631.54 20.42 0.97

05465000 Stage 2 609.22 0.05 0.91

PERSIANN-CCS 518.85 20.30 0.89
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Table 4 summarizes the spatial statistics for both

simulations as they relate to the AWiFS maps of the

extended Cedar Rapids area. The CSI for the

PERSIANN-CCS simulation is slightly higher than

the Stage 2 simulation, which suggests it correctly identi-

fied flooded pixels with fewmistakes (miss or false alarm)

compared to the Stage 2 run. Overall, both simulations

performed well, as the model was able to capture much of

the detail present in the AWiFS-based maps when forced

with both precipitation products. This highlights the value

of satellite observations for flood forecasting and in-

undation mapping in remote regions where radar obser-

vations are not available (Sorooshian et al. 2011).

6. Conclusions and future direction

The coupled hydrologic–hydraulic model HiResFlood-

UCI was driven by near-real-time remote sensing data in

FIG. 8. Max flood depth (m) during the event simulated with PERSIANN-CCS and extended

Cedar Rapids area (41.7398–42.1968N, 91.8788–91.2468W).

FIG. 9. Cleaned flooded maps of preflood and flood over the extended Cedar Rapids area.
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an effort to demonstrate flood inundation mapping ca-

pabilities of the model in a forecasting framework. Two

near-real-time precipitation products, PERSIANN-CCS

satellite-based product and Stage 2 radar, were used as

input for simulating the historic 2008 Iowa flood. This

study exploited the rare AWiFS areal imagery of the

Cedar River in the extended Cedar Rapids area before

and during the flood as a means of validating the model-

generated flood extent maps. Basin internal and outlet

hydrographs from the model were compared to corre-

sponding observed gauges as a secondary investigation of

model performance.

The AWiFS dataset of inundation extent for the 2008

Iowa flood event allowed for a unique experimental

setup that encompasses three varieties of remote sensing

for either simulation or validation. With AWiFS imag-

ery as a baseline, simulations forced by both Stage 2 and

PERSIANN-CCS produced flood maps of the extended

Cedar Rapids area with high PODs (0.97 and 0.93,

respectively).

Streamflow gauges located at basin interior points

reveal high streamflow correlations with both simula-

tions, with a minimum correlation of 0.72 for the Stage 2

simulation and 0.86 for the PERSIANN-CCS simula-

tion. The Stage 2 simulation tends to replicate event

magnitude better than the PERSIANN-CCS run, as

evidenced by a 42%–90% bias reduction from

PERSIANN-CCS to Stage 2. The PERSIANN-CCS

simulation captures the observed hydrograph shape

more accurately, which is also supported by the

PERSIANN-CCS run’s higher correlation coefficients

and better peak timing. However, because of the

sharper, more frequent peaks exhibited in the Stage 2

runs, it is expected that it would have slightly lower

correlation coefficients despite showing more repre-

sentative rise and recession rates.

Through application of the newly developed

HiResFlood-UCI, paired with near-real-time, remotely

sensed precipitation data, this study demonstrates

the ability to recreate detailed flood information

FIG. 10. Modeled flood depth maps with Stage 2 and PERSIANN-CCS precipitation data over the extended Cedar Rapids area.

FIG. 11. Validations of flooded maps from the model (with Stage 2 and PERSIANN-CCS precipitation) using AWiFS areal imagery.
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(particularly flood extent maps) in a forecasting setting.

Strong simulation performance for this application is

particularly promising, given the fact that the

HiResFlood-UCI was run with a priori parameters

provided by the NWS. Validation of the event via

unique aerial imagery available pre- and postflood and

observed hydrographs reinforces trust in the modeled

results. This study investigates the use of two funda-

mentally different precipitation estimation products in

flood forecasting. In doing so, early components of an

ensemble-based forecasting system have been in-

troduced and provide an opportunity for future de-

velopment. This approach may lead to probabilistic

inundation predictions that incorporate uncertainties

present in precipitation estimation products.

Largely, results from this work demonstrate the po-

tential benefits to society, especially in regions with

poorly monitored data. Simulation of a data-rich basin

using information and tools available globally permits

the evaluation of the type of results that could be expected

in a region where the critical calibration/validation step is

nearly impossible.
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