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ABSTRACT

The Moderate Resolution Imaging Spectroradiometer (MODIS) instrument aboard the NASA Earth

Observing System (EOS) Aqua and Terra platform with 36 spectral bands provides valuable information

about cloud microphysical characteristics and therefore precipitation retrievals. Additionally, CloudSat, se-

lected as a NASA Earth Sciences Systems Pathfinder satellite mission, is equipped with a 94-GHz radar that

can detect the occurrence of surface rainfall. The CloudSat radar flies in formation with Aqua with only an

average of 60 s delay. The availability of surface rain presence based on CloudSat together with the multi-

spectral capabilities of MODIS makes it possible to create a training dataset to distinguish false rain areas

based on their radiances in satellite precipitation products [e.g., Precipitation Estimation from Remotely

Sensed Information Using Artificial Neural Networks (PERSIANN)]. The brightness temperatures of six

MODIS water vapor and infrared channels are used in this study along with surface rain information from

CloudSat to train an artificial neural network model for no-rain recognition. The results suggest a significant

improvement in detecting nonprecipitating regions and reducing false identification of precipitation.Also, the

results of the case studies of precipitation events during the summer and winter of 2007 over theUnited States

show an accuracy of 77% no-rain identification and 93% detection accuracy, respectively.

1. Introduction

Reliable estimation of precipitation is important to

predict and manage water resources, hazard prepared-

ness, and climate studies (Ajami et al. 2008; AghaKouchak

and Nakhjiri 2012; Anderson et al. 2008). However,

spatial and temporal variability of precipitation makes it

difficult to rely on sparse gauge point measurements,

especially for remote regions. Higher spatial and tem-

poral resolutions as well as global coverage of satellite

observations are the main advantages of remotely sensed

precipitation estimates over in situ measurements. Since

they are an indirect method to estimate precipitation,

they are also associated with additional uncertainties.

One way to estimate precipitation is through using

visible (VIS) and infrared (IR) wavelengths. VIS and IR

data are available from geostationary (GEO) satellites

and have high spatial and temporal resolutions. How-

ever, VIS and IR channels do not measure precipitation

directly. Instead, they measure cloud albedo and cloud

top temperature that can be associated with precip-

itation rate using an indirect relationship. One limitation

of these algorithms is that nonprecipitating cold clouds

at high altitudes are often falsely identified as precip-

itating clouds, resulting in false precipitation estimates.

Intense precipitation is correlated with cold clouds.

However, the converse relationship may not be true. In

addition to this issue, orographically induced precip-

itation or precipitating warm clouds (e.g., stratiform)

may cause precipitation, which are not easily identified

with current algorithms (Joyce et al. 2004). The mis-

classification of rain/no-rain (R/NR) clouds is one of the

major issues facing IR-based algorithms (Arkin and Xie

1994). In addition to IR andwater vapor (WV) channels,

low-Earth-orbiting (LEO) satellites are equipped with

passive microwave (PMW) sensors that measure the

thermal emission and scattering of raindrops. PMW re-

mote sensing of precipitation is recognized as a more

reliable source of precipitation estimation from space

(Adler et al. 2001; Ebert et al. 1996).However, LEO

satellites have low temporal resolution of only one

or two times a day for a specific location on Earth

(Marzano et al. 2004). Since many LEO satellites are
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orbiting Earth, PMW data from them are operationally

available every few hours. To date, PMW sensors are

not carried on GEO satellites because of technical

challenges (Joyce et al. 2004).

Many satellite-derived precipitation products take

advantage of multiple remote-sensing devices. Tropical

Rainfall Measuring Mission (TRMM) Multisatellite

Precipitation Analysis (TMPA) products are combined

precipitation products that useGEO’s IR information to

fill the gaps between PMW estimates (Huffman et al.

2007). For example, to overcome the temporal limita-

tions of PMW estimates, National Oceanic and Atmo-

spheric Administration (NOAA) Climate Prediction

Center (CPC) morphing technique (CMORPH) uses

atmospheric motion vectors derived from GEO’s IR

data to propagate high-quality PMW precipitation esti-

mates when updated PMW data are unavailable (Joyce

et al. 2004). Other precipitation products use PMW-

adjusted IR data, such as the PMW-calibrated IR

algorithm (PMIR; Kidd et al. 2003), the Precipitation

Estimation from Remotely Sensed Information Using

Artificial Neural Networks (PERSIANN) algorithm

(Hsu et al. 1997; Sorooshian et al. 2000), and the Self-

Calibrating Multivariate Precipitation Retrieval algo-

rithm (SCaMPR; Kuligowski 2002). In addition, the

Naval Research Laboratory (NRL) blended-satellite

precipitation technique uses a combination of Moder-

ate Resolution Imaging Spectroradiometer (MODIS)/

Advanced Microwave Scanning Radiometer for Earth

Observing System (EOS; AMSR-E) sensors to detect

cirrus clouds and reduce false rain estimations in the

algorithm (Turk and Miller 2005). More recently, Rain

Estimation Using Forward-Adjusted Advection of Mi-

crowave Estimates (REFAME) algorithm uses IR im-

ages to advect microwave-derived rain rates along the

cloud motion tracks. This algorithm takes advantage of

a local cloud classificationmethod to adjust the rain rates

(Behrangi et al. 2010b). More sophisticated approaches,

such as the Lagrangian Model (LMODEL) algorithm,

combine information from microwave-calibrated data

and morphing techniques using a conceptual modeling

framework (Bellerby et al. 2009; Hsu et al. 2009).

Several studies emphasize that more advanced

methods are needed to improve the quality of satellite

precipitation products, including reducing their false

alarm ratio (FAR; Sorooshian et al. 2011). The utility of

multispectral satellite data in capturing microphysical

properties of clouds and improving precipitation esti-

mation has been the subject of many investigations in

recent years. For instance, Li et al. (2007) showed the

effectiveness of MODIS channel 31 (11.03mm) in iden-

tifying high clouds with very cold brightness tempera-

tures. Strabala et al. (1994) show that for high ice clouds,

a difference between 8.5 and 11mm brightness tem-

peratures [BTD(8.52 11)] is greater thanBTD(112 12).

Furthermore,Wang et al. (2009) used the near-infrared

(NIR) 2.19-mm band to retrieve cloud particle size and

used the water vapor absorption channel 1.38-mm band

to screen out upper-level ice clouds. Turk and Miller

(2005) show that significantly positive BTD(3.7 2 11)

provides information for identifying cirrus clouds at

night.

BTD(11 2 12) is also useful in identifying ice clouds.

Inoue (1987) showed that optically thin (t in the range of

0.1–4) cirrus clouds have BTD(11 2 12) values greater

than 2.5K. Furthermore, BTD(112 12) values less than

or equal to 0K correspond to deep convective clouds with

a heavy precipitation (Kurino 1997). More recently,

Setvak et al. (2003) showed that convective storms exhibit

a significant increase in 3.7-mm cloud top reflectivity.

BTD(8.5 2 11) also has been shown to be effective in

identifying high ice clouds. Since ice particles absorb

much less radiation at 8.5 than 11mm, high cirrus clouds

are expected to have a BTD(8.5 2 11) greater than one

(Roskovensky and Liou 2003). Thies et al. (2008) con-

sidered BTD(8.7 2 10.8) and BTD(10.8 2 12.1) to

identify cloud phase.

Using multispectral data for R/NR detection was also

a focus of many studies. A combination of VIS and IR

channels was initially used by Lovejoy and Mandelbrot

(1985) and Austin (1987) to identify R/NR occurrences.

Also, Capacci and Conway (2005), Behrangi et al. (2010a),

and others have found remarkable improvements in de-

tecting rainy areas when using multispectral data. Lensky

and Rosenfeld (2003) implemented the difference be-

tween a thermal IR channel and a mid-IR channel, BTD

(3.7 2 11), into a night-rain delineation algorithm.

In this paper, the application of multispectral data and

statistical classification techniques in improving IR-only

precipitation algorithms is explored. Multispectral data

available from MODIS images and CloudSat Level 2-C

Precipitation Column product (Haynes 2011) are two

sources of information that are used to improve the quality

of rain estimations and reduce the false rain detection.

CloudSat data are used to train a neural network model

usingMODIS data as input to identify false rain locations.

This paper is organized into five sections: section 2 ex-

plains false alarm in satellite precipitation data followed

by the methodology, satellite data, and the training model

in section 3. Section 4 presents the results and discussions,

and the conclusions are summarized in section 5.

2. False alarm in satellite precipitation data

Evaluation of satellite precipitation algorithms is es-

sential for future algorithm development. This is why
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many previous studies are devoted to the validation of

satellite-based observations (e.g., Tian et al. 2009;

Amitai et al. 2009; AghaKouchak et al. 2010b; Zhou

2008; Gochis et al. 2009; Yilmaz et al. 2005; Shen et al.

2010; Dinku et al. 2008; Liu et al. 2009; Sapiano and

Arkin 2009;AghaKouchak et al. 2012). For instance, Tian

et al. (2009) analyzed the error of six high-resolution

satellite products versus a gauge-based estimate and

reported regional and seasonal variations of error pat-

terns in the contiguous United States. They concluded

that satellite products tend to overestimate rainfall in

the summer and underestimate it in the winter. Sapiano

and Arkin (2009) also confirmed that satellites over-

estimate warm season precipitation over the United

States. Using volumetric FAR, AghaKouchak et al.

(2011) showed that several satellite products exhibit

high false alarm rate for rainfall, especially at high

quantiles of observations.

To investigate false alarms in the satellite-based pre-

cipitation products, we conducted a validation study to

compare PERSIANN precipitation data with ground-

based measurements. FAR and probability of detection

(POD) are calculated for the time period between 2005

and 2008 over the United States. The FAR is the ratio of

falsely identified rainy pixels to the total number of rainy

pixels in satellite data, whereas the POD measures the

fraction of observed precipitation that was correctly

forecasted [the ratio of the total number of times that

rainfall was correctly forecasted to the total number of

observed rainy pixels (Wilks 2006)]. In the current study,

the Stage IV radar-based multisensor precipitation es-

timates (MPEs), available from the National Centers for

Environmental Prediction (NCEP), are used as the

reference data. The Stage IV precipitation data are ad-

justed for various biases using rain gauge measurements

(Lin and Mitchell 2005) and are considered the ‘‘best’’

area approximation among the currently available area-

averaged rainfall datasets (AghaKouchak et al. 2010a).

Stage IV data are aggregated into 0.258 spatial and

3-hourly temporal resolutions, which are the same as the

PERSIANNprecipitation data. Figure 1 shows the FAR

and POD for the entire 4-yr period (Fig. 1a) and the

summer and winter seasons for the PERSIANN pre-

cipitation product (precipitation threshold is considered

as 0.05mmh21; Figs. 1b,c). Figure 1 reveals very high

FARs over the central and western United States and

lower FARs over the eastern United States on average.

Higher FAR is associated with the presence of high

cirrus clouds, especially in the winter season. Tian et al.

(2009) also showed higher FARover the westernUnited

States in winter season by PERSIANN data. The aver-

age POD is about 60% over the central United States

and low over the southwestern region. Low POD on the

eastern and western sides of the continent is associated

with missed precipitation over these regions. Missed

precipitation may be due to missed warm rain or snow

cover on the ground (Tian et al. 2009).

Generally, satellite precipitation estimates seem to be

better during the summer seasons, perhaps because of

a dominance of convective storms. On the other hand,

the FAR is very high during the wintertime because of

the presence of nonprecipitating high cold clouds. Ad-

ditionally, the presence of snow and ice on the ground

and the inability of PMW sensors to measure snowfall

FIG. 1. (a)–(c) FAR and (d)–(f) POD of the PERSIANN precipitation data over the contiguous United States (from 2005 to 2008):

(a),(d) 4-yr results; (b),(e) summer season results; and (c),(f) winter season results.
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over snow- or ice-covered surfaces increase the error in

satellite precipitation estimations and result in higher

FARs during the wintertime. Finally, it is worth men-

tioning that radar coverage is limited over the western

region of the United States (with the very high false

alarm shown in Fig. 1) because of beam blockage in

mountainous terrain. The Stage IV data have a large

number of missing data over the Pacific Northwest re-

gion; therefore, the precipitation data for this region are

not included in the analysis.

3. Methodology

This study develops a no-rain detection algorithm that

takes advantage of CloudSat and MODIS observations

to detect no-rain areas. To show an example of how

different datasets are used in this study, Fig. 2 is pre-

sented. Figure 2a demonstrates the CloudSat overpass

through a precipitation event (Stage IV data) over South

Carolina and neighboring states on 13 August 2008

(0545 UTC). The black line in Fig. 2a represents the

track of the CloudSat radar, while Fig. 2b shows the

vertical profile of the clouds with different cloud types

obtained from the 2B-CLDCLASS product. The

CloudSat cloud type classification product is able to

identify clear sky, as well as seven different classes of

clouds: cumulus (Cu), stratocumulus (Sc), altocumulus

(Ac), altostratus (As), nimbostratus (Ns), high cloud

(cirrus or cirrostratus), and deep convective cloud.

Furthermore, the figure displays PERSIANN (Fig. 3c)

precipitation estimates and radar observations (Fig. 2d)

corresponding to the CloudSat track. One can see that

the maximum amount of precipitation estimated by

PERSIANN coincides with the high cirrus anvil, which

has the lowest brightness temperature. However, ground-

based data indicate that the peak of the storm is in the

center of the deep convective tower (about 15mmh21),

which makes more physical sense. Figures 2e and 2f

display cloud brightness temperature, measured by

MODIS, which is informative for different cloud types.

Figure 2e shows that the lowest value of brightness

temperature at 11mm appears at the location of high

clouds and coincides with high precipitation estimations

from the PERSIANN product. As discussed earlier, the

brightness temperature difference between channels 31

and 29 of MODIS [BTD(8.5 2 11)] is a strong positive

value (greater than 2K) for high ice clouds. Figure 2g

presents the radar reflectivity observations by CloudSat

showing the vertical structure of the convective zone.

MODIS BTD(8.52 11) is almost zero in the presence of

deep convective cloud, as shown in Figs. 2f and 2g. The

distinction between optically thin clouds (i.e., cirrus)

and optically deep clouds (i.e., convective clouds) from

multispectral channels helps to improve the IR-only

algorithms. Underestimation of PERSIANN algorithm

in the presence of deep convective clouds is one of the

limitations of IR-based algorithms.

a. Classification

Multispectral image classification is an important

technique in the application of remote sensing and

geosciences. Statistical classification is a multivariate

analysis that takes advantage of simultaneous observa-

tions coming from images on different spectral bands.

Analyzing a set of input variables for a set of known

classes (i.e., labels), a statistical connection will be cre-

ated between the input features and the target response

(i.e., training dataset). Among different classification

techniques, artificial neural networks (ANNs) have been

shown to be an effective tool in classifying complicated

systems (e.g., Hsu et al. 1997; Capacci and Conway 2005;

Behrangi et al. 2009; Hong et al. 2004; Bellerby et al.

2000; Tapiador et al. 2004).

ANNs are pattern recognition tools usually used to

model complex relationships between a set of inputs and

corresponding outputs (Bishop 1996). These models are

composed of interconnecting artificial neurons and are

employed to find statistical correlations between multi-

spectral information on cloud tops and the presence of

precipitation (see Fig. 3 for ANNs’ model structure). In

this study, a feed-forward, back-propagation model with

a single hidden layer and a sigmoidal activation function

was created. The ANN model calculates the errors be-

tween the calculated output and given output data, and

by adjusting the weights, minimizes the error. The gen-

eral equation for ANNs is in the form of a linear com-

bination of fixed nonlinear basis functionsfj (x) with the

weights vj and is in the form of

y(x,w)5 f

"
�
M

j51

vjfj(x)

#
. (1)

Each basis function fj (x) itself is a nonlinear function of

a linear combination of the inputs (i.e., MODIS data),

where the coefficients in the linear combination are

parameters to be adjusted during model training.

In the general ANN equation, f is the activation

function. In this study, a sigmoidal activation function

was associated with all the neurons in themodel and is in

the form of

f 5
1

11 e2a
. (2)

The target values in the ANN model are a binary

vector of no-rain (1) or possible rain (0). The ANN
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computes the value of the output based on the series of

inputs entered into the model. If the output is equal or

more than 0.5, it is assumed to be a no-rain scenario, and

values less than 0.5 are possible rain pixels.

The presence of precipitation was assigned to tex-

tural and spectral features of clouds observed by the

MODIS satellite, whenever a CloudSat retrieval was

available. In this study, the training dataset was created

FIG. 2. An example of the CloudSat cloud classification map and MODIS brightness tem-

perature data on 13 Aug 2008 (0545 UTC). (a) Track of CloudSat passing through a storm

measured by Stage IV precipitation data. (b) CloudSat vertical cloud profile. (c) PERSIANN

precipitation data (mmh21). (d) Stage IV precipitation data (mmh21). (e) MODIS brightness

temperature at 11mm (K). (f) MODIS BTD[8.5–11] (K). (g) Radar reflectivity (dBZ).
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from CloudSat and MODIS data over the contiguous

United States. At each CloudSat track, the multispec-

tral information from MODIS spectral bands were

considered as an input to the model and the near-

simultaneous observations of CloudSat (target value)

defined whether it is a possible rain or no-rain pixel.

The trained model was then used as a reference to find

whether any pixel in the MODIS image is falsely

identified as a rainy pixel for the times that CloudSat

data are not available.

b. Satellite observations

The MODIS instrument onboard the National

Aeronautics and SpaceAdministration’s (NASA)EOS

Aqua and Terra platforms with 36 spectral bands pro-

vides valuable information about cloud microphysical

characteristics. The spatial resolution of the MODIS

data is 250m for visible channels (channels 1 and 2,

0.6–0.9mm), 500m for channels 3–7 (0.4–2.1mm), and

1000m for channels 8–36 (0.4–14.4mm). For this study,

the MODIS level 1B calibrated radiance data were

used.

A set of six WV and IR channels of MODIS (6.75,

7.325, 8.55, 9.7, 11.03, and 12.02mm) were selected as

input to the ANN model. The availability of these

channels during the day and night makes it possible to

have a consistent R/NR detection algorithm for day and

night retrieval.

In addition to MODIS, CloudSat (a NASA Earth

Sciences Systems Pathfinder mission) is designed to

measure the vertical structure of clouds from space and

provides the first direct observation of cloud vertical

structure (Weisz et al. 2007). CloudSat is incorporated

into the EOS satellites, which fly in a sun-synchronous

orbit at a 705-km altitude. The CloudSat satellite con-

sists of a 94-GHz Cloud Profiling Radar (CPR) and

provides a rich source of information about cloud

properties. MODIS and CloudSat are both part of the

afternoon constellation of satellites, called the A-Train

(Stephens et al. 2002). The CloudSat radar flies in for-

mation withAqua, with an average of 60 s delay between

them, providing almost simultaneous observations.

The CloudSat Level 2-C Precipitation Column al-

gorithm (Haynes 2011) provides information about

the presence of surface precipitation. The determi-

nation of surface precipitation occurrence is based on

the radar reflectivity data near the surface and the

surface reflection characteristics (i.e., the Precip_flag

variable in the Precipitation Column dataset). The

Precip_flag is available over land, ocean, and sea ice

and categorizes precipitation into nine different groups:

no precipitation, uncertain, rain possible, rain proba-

ble, rain certain, snow possible, snow certain, surface

mixed precipitation, mixed precipitation possible, and

mixed precipitation certain. In this study, only in-

stances of certain no-precipitation were considered as

NR pixels.

c. Training dataset

To have a better estimation of performance of the

proposed technique, the analysis was done for summer

and winter precipitation events. Separate training for

summer andwinter times were considered to account for

different climate conditions in different seasons and

improve the accuracy of themodel. As explained earlier,

the spectral information from MODIS onboard Aqua

and the corresponding CloudSat estimation of R/NR

were considered in the training datasets. Data were

randomly divided into two groups: training and testing.

The summer training data included about 118 000 pixels

observed in the summer of 2008, with 16 000 rainy pixels

(dry to wet ratio of 7.3:1). Similarly, winter training

dataset with a dry to wet ratio of 1:2.8 embraced around

130 000 pixels in total in the winter of 2010.

d. Application of the model on precipitation events

After training the algorithm using collocated MODIS

and CloudSat pixels, the ANN model was used on

MODIS multispectral images to identify the NR re-

gions. At eachMODIS pixel, the ANNmodel estimated

if that pixel is a NR pixel, and the results were compared

with CloudSat detections. The model performance was

investigated over the continental United States for the

summer and winter of 2007.

4. Results and discussions

After training the model using the summer of 2008

and the winter of 2010 datasets, the model validation

was performed on 2007 data. CloudSat radar data are

considered as the ‘‘truth’’ to validate the R/NR classifi-

cation model presented in this study. The 2007 summer

FIG. 3. Schematic of the feed-forward, three-layer perceptron

with six input variables. The final output layer provides the R/NR

detection.
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results were evaluated over 70 000 CloudSat pixels and

showed 78% accuracy in detection of NR pixels. The

2007 winter data validation on 50 000 pixels showed

a very high accuracy of 93%. Figures 4 and 5 display the

distribution of different cloud types for correct NR pixel

classification as well as the misclassified pixels for sum-

mer and winter seasons, respectively.

Figure 4 shows that the NR detection algorithm has

the poorest performance in the case of middle-level

clouds such as altostratus and altocumulus as well as

precipitating clouds (see Table 1). The misclassification

rate of the pixels associated with altostratus clouds in

NR detection was 39%, and the misclassification rate

was around 34% in the case of altocumulus clouds

(Table 1). The model’s low performance in the case of

middle-level clouds confirms the limitation of IR-based

algorithms in detecting warm rain clouds.

The distribution of different cloud classes in the win-

ter validation dataset are demonstrated in Fig. 5. The

first panel in the figure shows that most NR pixels

are associated with high clouds and stratocumulus. The

misclassification rate is 14% in the case of altostratus

clouds and the error is less than 6% in the remaining

types of clouds.

The NR model’s poor performance in the presence of

deep convective clouds, with 43% detection error in

winter season, is in agreement with summertime results.

In general, deep convective and nimbostratus clouds are

mostly associated with rain (Aumann et al. 2011). Most

NR pixels associated with deep convective cloud are

misclassified as rain in both summer and winter seasons.

Hence, the NR detection algorithm does not perform

FIG. 4. Distribution of different cloud types in the case of (top)

correct NR detection and (bottom) misclassifications for the

summer of 2007.

FIG. 5. As in Fig. 4, but for the winter of 2007.

TABLE 1.Misclassification error percentage for summer andwinter

seasons.

Misclassification error (%)

Cloud type Summer Winter

High cloud 9 6

Altostratus 39 14

Altocumulus 34 4

Stratocumulus 15 3

Cumulus 24 4

Nimbostratus 72 5

Deep convective 68 43
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well in cases of precipitating clouds showing very low

accuracy in the presence of these cloud types.

As discussed in section 1, the PERSIANN dataset

shows higher false alarms in the winter season. Applying

the current algorithm, one can see a better improvement

of precipitation estimation in the winter season.

Case study

Two case studies on summer and winter precipitation

events are presented here to show the application of

this technique to improve the quality of near-real-time

PERSIANN precipitation products. The MODIS level

1B dataset has a spatial resolution of 1 km in contrast to

the 0.258 (;25 km) PERSIANN precipitation product.

Therefore, the MODIS images were regridded to the

0.258 PERSIANN grids and then used as input to the

ANN model.

The temporal resolutions of the datasets are also dif-

ferent. PERSIANN data are aggregated from 30-min

rain estimations into hourly accumulated precipitations.

In contrast, MODIS provides instantaneous observa-

tions twice a day. In this study, MODIS images with-

in 20min of PERSIANN estimations are mosaicked

together into one raster image and then compared

with corresponding PERSIANN data. Corresponding

FIG. 6. Performance of the ANN model in identifying false rain locations on 5 Aug 2007

(0500 UTC). (a) Stage IV precipitation data (mmh21). (b) PERSIANN data (mmh21).

(c) Model performance in FAR detection.

TABLE 2. Model performance presented in Figs. 6 and 7.

Summer Winter

No. of precipitation pixels in the

Stage IV estimate

449 1151

No. of precipitation pixels in the

PERSIANN estimate

562 717

No. of the false rain pixels corrected 155 300
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Stage IV data are presented for comparison of model

performance.

Figure 6a shows the Stage IV precipitation data

(mmh21) on 5 August 2007 (0500 UTC). Figure 6b

represents the corresponding PERSIANN data for

the same time step (mmh21). By finding the ANN

model’s results on the corresponding MODIS images

[two images for 5 August 2007 (0440 and 0445 UTC)],

the false alarms were identified. A false rain pixel is

defined as an NR pixel in the ground-based observation

data (Stage IV data) that contains precipitation from

the satellite estimations. Figure 6c demonstrates the

current algorithm’s results in identifying false alarms

on PERSIANN-derived precipitation. Gray pixels on

the image show the location of correct rain detection

from the satellite, and red and blue pixels are false rainy

pixels from PERSIANN estimations. The blue color

identifies the accuracy of the model in identifying NR

pixels, while the red color demonstrates a false rain pixel

that the model could not detect (here, to define a false

rain, the Stage IV data are considered the reference).

Table 2 presents the number of rainy pixels in each da-

taset as well as number of FAR pixels detected. The

algorithm was able to identify 155 false rain pixels (i.e.,

62% reduction in FAR in this event). Note that the re-

gion between the solid blue lines shows the MODIS

coverage.

Figure 7 is another example of false rain detection for

6 November 2007 (0300 UTC). Figure 7c shows that

61% of false rain pixels are identified in this event.

PERSIANN estimation shows a large area of false rain

on the southeast side of the event, and themajority of FAR

pixels (300 false rain pixels) could be removed using the

current R/NR algorithm (see Table 2). We also acknowl-

edge that the temporal differences between different

datasets [i.e., MODIS and Geostationary Operational

FIG. 7. Performance of the ANN model on 6 Nov 2007 (0300 UTC). (a) Stage IV precipitation

data (mmh21). (b) PERSIANN data (mmh21). (c) Model performance in FAR detection.
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Environmental Satellite (GOES) observations] could

affect the results.

5. Conclusions

Previous studies have highlighted the need to improve

the quality of satellite precipitation data. High false

alarm ratio is one of the problems that current satellite

products are facing, especially during cold seasons. In

this study, the ability of an NR classification model using

theCloudSat data as well as correspondingmultispectral

data from MODIS were investigated.

An artificial neural network model was developed to

take advantage of accurate surface rain detections from

the CloudSat satellite. Model training was performed on

CloudSat andMODIS data from the summer of 2008 and

the winter of 2010. The summer and winter 2007 datasets

were selected to assess the performance of the model.

Model validation showed an accuracy of 93% and 77% in

identifying false rain pixels for the winter and summer

season events, respectively. Having different cloud clas-

ses available from theCloudSatCLDCLASSproduct, the

model performance was evaluated in the presence of

different cloud classes. The model performance was the

least in cases of deep convective and middle-level (e.g.,

altostratus and altocumulus) cloud types.

By reducing false rain, the quality of satellite pre-

cipitation products for practical applications (e.g., flood

forecasting) will significantly improve. In the future,

there is a possibility to include multispectral data from

the Advanced Baseline Imager (ABI) sensor aboard the

futureGOES–R Series (GOES-R) satellite to overcome

the limited retrievals of MODIS.

The proposed technique has the potential to be in-

tegrated into near-real-time satellite precipitation prod-

ucts to reduce false alarms from the algorithms. Two case

studies presented in the summer andwinter of 2007, using

hourly PERSIANN data, showed reduction of false rain

in comparison with Stage IV radar data.
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