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Short-term high-resolution precipitation forecasting has important implications for naviga-
tion, flood forecasting, and other hydrological and meteorological concerns. This article
introduces a pixel-based algorithm for Short-term Quantitative Precipitation Forecasting
(SQPF) using radar-based rainfall data. The proposed algorithm called Pixel- Based Nowcasting
(PBN) tracks severe storms with a hierarchical mesh-tracking algorithm to capture storm

Keywords: advection in space and time at high resolution from radar imagers. The extracted advection
Quantitative Precipitation Forecasting field is then extended to nowcast the rainfall field in the next 3 hr based on a pixel-based
Nowcasting Lagrangian dynamic model. The proposed algorithm is compared with two other nowcasting
;;i?a(;:)ition algorithms (WCN: Watershed-Clustering Nowcasting and PER: PERsistency) for ten thunder-

storm events over the conterminous United States. Object-based verification metric and
traditional statistics have been used to evaluate the performance of the proposed algorithm. It
is shown that the proposed algorithm is superior over comparison algorithms and is effective
in tracking and predicting severe storm events for the next few hours.

© 2012 Elsevier B.V. All rights reserved.

Severe Rainfall Prediction

1. Introduction and literature review

Nowcasting is referred as forecasting the future state of
the atmosphere within a very short time (e.g., 0~3 hr) at a
given location. For such short forecast lead times, an effective
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estimation and extrapolation of existing storms from the
current observations (radar and satellite images) is critical
(Golding, 1998).

Two primary approaches are used frequently for storm
nowcasting depending on the length of prediction and the
forecast skill. These approaches are: (1) the application of
storm-scale Numerical Weather Prediction (NWP) models
which explicitly model the initiation, growth, and dissipation
of storms based on the physical modeling of the related
atmospheric processes, and (2) “data-driven” extrapolation-
based approaches which are storm-tracking and advection-
based techniques, with an attempt to predict the evolution of
the observed storms (Li et al., 1995; Golding, 1998; Ganguly
and Bras, 2003; Bowler et al., 2004; Wilson et al., 2004; Vila
et al., 2008; Liang et al., 2010; Liguori et al., 2012; Sokol and
Pesice, 2012; Zahraei et al., 2011a, 2011b). Considering the
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relationship between the length of forecast and specific
storm characteristics, such as temporal and spatial scale, both
of these methods may be applicable and complementary
(Ganguly and Bras, 2003).

As shown in Fig. 1, due to the chaotic characteristic of
atmospheric systems, there is always a decaying trend in
prediction skill. The relative information content from
extrapolation/advection-based methods is best immediately
after the storm is observed (within the first 2-3 hr); the
relative information content then decreases linearly with
time (Austin et al., 1987; Golding, 1998; Lin et al., 2005). For
storm-scale prediction, the shorter terms are most likely to
be forecasted using extrapolated observations, while the
relatively longer-term forecasts (e.g., >3 hr) will likely need
to incorporate more dynamics contained in storm-scale NWP
models (Ganguly and Bras, 2003).

This study introduces a newly developed algorithm called
the Pixel-Based Nowcasting (PBN) algorithm. The PBN
technique is being developed to improve short- (or very
short) term predictability of severe storms using a high-
resolution radar-based rainfall product (Q2).

The following is a brief literature review related to both
the NWP and extrapolation-based approaches for Short-term
Quantitative Precipitation Forecasting (SQPF) or nowcasting.
Then, it will be pursued by methodology, case studies and
data, verification and results, and conclusion.

1.1. SQPF and NWP models

During recent years, several NWP models have been used
in the United States to make forecasts for short and long
periods of time (Wilson et al., 2004). These models have been
adapted to predict longer-term atmospheric phenomena
with typically coarse spatial and temporal resolutions. As
presented in Golding (1998), the NWP model forecasts are
relatively sensitive to the initial condition, resolution, and
assimilation algorithms, and their capability may not be
optimized for very short-term predictions (Fig. 1). Recently,
by using a new generation of sensor networks, several
different observations have become available in the United
States, with sampling frequencies of 1 hr or less. Thus, the
application of high-frequency updating of short-term
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Fig. 1. Representation of the loss of information content in forecasts as a
function of lead time. The solid line represents the theoretical limit of
predictability, the dashed line indicates NWP models, and the dotted line
represents nowcasting methods (Austin et al., 1987).

numerical predictions is facilitated. As a result of the more
recent observations, more accurate forecasts are expected
(Benjamin et al., 2004).

The first hourly updated, 3-km storm-resolving model,
the High-Resolution Rapid Refresh (HRRR) model, was
employed recently at the National Oceanic and Atmospheric
Administration NOAA/ESRL/GSD. The HRRR model is nested
within the Rapid Update Cycle (RUC) and Rapid Refresh (RR).
The ability of HRRR in assimilating radar-reflectivity data in
the 13-km RUC and upcoming 13-km RR with a version of the
Weather Research and Forecasting (WRF) model is consid-
ered a significant improvement (Benjamin et al., 2009). Due
to its ability to simulate atmospheric physical processes,
including convective activities initiation, the HRRR model has
found a broad range of applications, particularly for naviga-
tion purposes (Wolfson et al., 2008).

Although there have been improvements in the capabilities
of NWP models, especially in terms of their contribution in
detection of storm-initiation dissipation activities, NWP models
still have some limitations for very short-term prediction of
smaller-scale storms. For example, Lakshmanan et al. (2009)
introduced the position error as a major issue regarding the
application of nowcasting methods for the prediction of severe
thunderstorms. Therefore, considering that the current re-
search concentrates on short-term predictions (0-3 hrs), as
presented in Fig. 1, it is timely to introduce simpler alternative
algorithms. As opposed to NWP models, they require much less
input data, less computational requirements (cost and time),
provide the flexibility of being applicable at the global scale
with ever-increasing availability of remotely sensed data, and
are more or less as accurate as NWP models.

1.2. SQPF with extrapolation-based models

Some studies have shown that the extrapolation-based
algorithms are reasonable nowcasting methods for precipitation
(Dixon and Wiener, 1993; Johnson et al., 1998; Germann and
Zawadzki, 2002, 2004; Germann et al, 2006; Mueller et al.,
2003). Precipitation is an important variable for flash-flood
forecasting; reliable nowcasting is in high demand with required
temporal and spatial resolution of a few minutes and a few
hundred meters (Vasiloff et al., 2007; Vieux and Vieux, 2005).
Hence, extrapolation-based nowcasting algorithms using
existing remote-sensing information have been used extensive-
ly, especially within the first few hours of the occurrence of storm
events (Grecu and Krajewski, 2000; Montanari et al., 2006).

A general representation of the extrapolation-based
nowecasting system is described below (Grecu and Krajewski,
2000; Laroche and Zawadzki, 1995; Montanari et al., 2006):

Ap,(x, Ap,(x, Ap; (X,
pA(i y)+UX(X7y) pA(i y)+vy(x7y) pi; )
:g[Pt(xvy)v"'7Ptfl(x7y)7a(xvy>] +w (])

in which, p(x,y) is the precipitation depth at each location (e.g.,
the pixel located on (xy) at time t), U, (velocity in the x
direction; West-east), and V, (velocity in the y direction;
North-south) are advection-field components of the rainfall
field for storms located on (x,y). g is a function of parameters a
that needs to be estimated using(P,...,P.;) rainfall rate in
current and previous time steps, and w is the noise element.
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According to Eq. (1), the rainfall-depth variation at time ¢ and
at (x,y), Ap,(x,y) would be a function of two parallel processes.
The second and third terms on the left-hand side of Eq. (1)
introduce a Eulerian process, in which the storm is moving in
the Eulerian reference frame. The storm variation is a result of
the advection vectors of Uy, V,. In addition, the function g
represents a dynamical Lagrangian process in which a future
storm's intensity is a result of its historical changes in a
Lagrangian reference frame that travels along the storm path
(Grecu and Krajewski, 2000). Considering a storm in the
smallest possible unit (pixels), Eq. (1) presents a pixel-based
definition of nowcasting in which the storm moves forward
pixel-by-pixel.

As suggested by Austin and Bellon (1974), a nowcasting
algorithm should consist of a tracking and forecasting process.
Several attempts to improve the trackability of the storms’
movements have been made. Some investigators have pro-
posed approaches to track and forecast thunderstorms with the
highest possible resolution (Eq. (1): spatial resolution in the
scale of each pixel) (Tuttle and Foote, 1990; Grecu and
Krajewski, 2000; Germann and Zawadzki, 2002; Ridal et al.,
2010). Two particular classes of algorithms have been used to
estimate storm velocity from two consecutive images. The first
approach is based on the maximum correlation between two
successive images (Smythe and Zrnic, 1983; Tuttle and Foote,
1990; Laroche and Zawadzki, 1995). The second approach
assumes that changes in the first image (e.g., advection) result
in the second image. The advection field is then estimated by
minimizing the difference between the reshaped first image
and the second image (Germann and Zawadzki, 2002, 2004;
Turner et al., 2004). For example, Germann and Zawadzki
(2002) estimated the echo motion field by utilizing the
Variational Echo Tracking (VET) algorithm to retrieve 2-D
advection-field components including: Ux (velocity compo-
nent in the x direction), Vy (velocity component in the y
direction), by minimizing a large-scale nonlinear cost function.
Regardless of the complexity of solving a large-scale nonlinear
optimization problem, the VET algorithm is sensitive to the first
guess (Laroche and Zawadzki, 1995).

1.3. Necessity for new tracking and nowcasting algorithms

Many radar-based wind-retrieval algorithms employ
template-matching algorithms to estimate inter-image dis-
placement (Leese et al, 1971). These methods compare the
patterns of pixels within a small window in a given image with
similar patterns at potential corresponding locations in the
subsequent image. A similarity measure, such as maximum
correlation, can identify the most matching locations. However,
the correlation surfaces associated with the search algorithms
frequently display diffuse or multiple optima. Similarly, the
simple template-matching algorithm operates based on win-
dow translations which are relatively incapable of accommo-
dating feature rotation and deformation (Bellerby, 2006).

To overcome the aforementioned problem of simple
template-matching algorithm, several techniques impose
smoothness criteria on the displacement field. It is also suggested
to adopt a hierarchical representation of the displacement field
in which each feature motion is considered as the sum of
smoothly varying trends identified at relatively coarse spatial
resolution and smaller magnitude local correction derived at

progressively higher spatial scales (Bergen et al., 1992). It is
also possible to couple hierarchical-tracking approaches with
mesh-based models of image deformation. Mesh models
provide a piecewise representation of the displacement field
in which displacement is defined over the nodes of a mesh and
interpolated within each mesh element (Wang and Lee, 1996).
In this article, a newly developed hierarchical storm-advection
algorithm based on the topological transformation of a
quadrilateral mesh is implemented (Bellerby, 2006). This
algorithm is a computationally efficient technique to capture
movements and rotations of storms. The algorithm has shown
promising performance in tracking storms (Behrangi et al.,
2010).

The proposed tracking algorithm, along with the projection
scheme, is able to track the advection and rotation of small
scale, fast-moving thunderstorms that could not be necessarily
predictable using the current algorithms. The proposed PBN
predicts both storm advection and its dynamical features (e.g.,
rainfall-intensity changes). The PBN algorithm could track and
forecast relatively small-scale severe storms that have signif-
icant importance regarding their associated catastrophic
phenomena, such as tornados and severe rainfall.

The newly proposed PBN technique will be compared to
two existing algorithms including: WCN and PER. One current
state-of-the-art of nowcasting is called Watershed-Clustering
Nowcasting (WCN) in the current research. The WCN,
developed by the National Severe Storm Laboratory (NSSL)
and the University of Oklahoma, is part of the Warning
Decision Support System-Integrated Information (WDSS-II)
system (Lakshmanan et al., 2009). The algorithm is computa-
tionally efficient and effective for the identification and
tracking of severe thunderstorms. The algorithm has a few
consecutive steps, including smoothing, quantization, trans-
formation, immersion simulation, and affecting the scale. The
algorithm proposes a watershed transform model where the
storm objects are defined as salient if they can pass size criteria
instead of considering watershed depth. Therefore, it is not
necessary to define different thresholds and watershed depth
criteria. The algorithm uses the cost-function optimization
problem to track storm objects (Dixon and Wiener, 1993). PER
is the PERsistency algorithm which assumes there is a frozen
situation that storm does not change.

The main contribution of this paper can be summarized as
follows: (1) implementing a newly developed pixel-based
tracking algorithm to track each rainy pixel advection, which
improves the predictability of smaller-scale severe rainfall
events.; (2) extract storm-advection field and dynamic-
evolution features based on Step (1); (3) storm projection
(extrapolation) including both storm advection and evolu-
tion (e.g., rainfall-intensity change); and (4) comparison
with other techniques. Being simple and not a computation-
ally time-consuming algorithm, the PBN is offered to provide
a relatively accurate initial forecast for severe events in
short-term lead time.

2. Methodology
2.1. Pixel-Based Nowcasting (PBN) algorithm

Thunderstorms usually have relatively small-scale high-
rainfall cores that should be predicted accurately. Regardless of
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t- 2At t-At t Prediction: t+At

Fig. 2. Proposed PBN algorithm, V,;: The specified darker pixel advection vector between t-2At and t-At; V;: pixel advection vector between t-At and t; Vp:
predicted advection as a function of V,_; and V, for the darker (central) pixel; Vr: average predicted advection vectors of all Vp for nine pixels (window 3 x 3)

centered on the darker pixel Vr=}_V,/9.

their sizes and relatively short lifetimes, the advection-based
nowcasting algorithm should enhance the prediction of the
storms’ future positions. Therefore, the PBN algorithm forecasts
storms associated with intensive rainfall more accurately using
a pixel-based storm-tracking process to catch each storm
dynamic advection process using radar imagery, and then an
extrapolation/nowcasting step that provides the dynamic
evolution of pixel position and precipitation intensity from
the current to the future time steps. The PBN uses the
high-resolution pixel-based tracking algorithm adapted to
track rainy pixels (pixels more than 0.4 mmy/hr). The tracking
algorithm finds the corresponding location of each rainy pixel
in the previous time step(s). After tracking each rainy pixel in
time, the corresponding advection velocity and evolution trend
(rainfall-intensity change) for each pixel will be known. The
extracted features can be used to project the storm. This
algorithm is summarized in Eqgs. (2)-(5):

Predictedrainrateatt + nAt = py a (X nats Yeenat)

= min{p,(x;,y;) + nAP; Threshold} (2)
Predictedlocation : (X, nar, Visnar) = (X, ¥e) + nAX.Y,)  (3)
Predicteddisplacementfromttot + 1 : A(x;,y;)

=X Y0y Re—ae Yeeae): Re_aa0 Yeooar), -} (4)

Predictedrainfalltrend : AP
= fo{Pe(Xe; Ye)s Dot Xe—pes Ye—ae)s Pe—2(Re—2a6: Ye—24t) 5 ++-} (5)

in which prinac (Xt +nas Ye+nad) (intensity/time) is the
predicted rainfall rate for the pixel located on (X; ;nae Ve +nac)
in time t+nAt (t: the current time; if n=1, t+At: one
time-step prediction, each time step =time interval between
two consecutive radar imageries), and p; (x, y.) is the
precipitation rate at time step t corresponding to the location
(X, yo). The pixel-based tracking algorithm finds the
corresponding location of each rainy pixel in the previous
time steps with time interval At; for example, pear (Xe-a¢» Ye-ac)
at time t-At is the pixel that corresponds to p; (x,y;) at time t.
The functions f; and f> represent a dynamical Lagrangian

process in which the reference frame moves with each pixel.
The function f; is used to estimate each pixel advection. n is the
prediction step. The PBN algorithm provides predictions every
10 min up to 180 min (n=1, 2, ..., 18).

The advection-based displacement A(x,y,) is a function of
each specific pixel location in previous time step(s). The PBN

@r.T7.7.

(b) —————
a=a ""?" ....? ....... 4.._

Baseline image Reference Image

Fig. 3. Representation of the mesh-based tracking algorithm. (a) Image
template matching to locate the position in the reference image which most
closely corresponds to the center of each baseline mesh. (b) Mesh
replacement by meshes of baseline centers and corresponding optimal
matching locations. (c) Mesh interpolation. (Bellerby, 2006, used with
permission).
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Fig. 4. Three consecutive radar images (At =10 minutes; Spatial resolution~20 km): (a) 20100623-0540, (b) 20100623-0550, (c) 20100623-0600, (d) extracted
advection field between (a) and (b), and (e) extracted advection field between (b) and (c), (Rainfall Unit=mm/hr).

assumes that the rate of rainfall pyar (Xev a0 Yerad) 1S a
function of the current and previous time steps(s). Similarly,
the function f; is used to estimate Ap based on previous time
steps. The Ap is the rainfall trend for each specific rainy pixel.
In growing convective storms, Ap can be a significant positive
quantity. In order to avoid unreasonable values, a threshold is
set to limit the maximum values each rainy pixel might be
assigned to.

According to Egs. (6)-(8) and Fig. 2, f; and f5 are used to
predict storm advection and intensity, respectively.

AXe, V) = F1{&eYe)s Re—atr Yieae)s Xe—2a6:Ye—2a0) }
=f1Vexe. YAt 5 Vi1 (X—ae Yi—ad) At = (6)
=V, x At = mean(Dist ;Dist ,)

Table 1

. 2 2105 .
Dist 4 = ((Xt_xt—At) + YVe—Ye—ar) ) ; Dist ,

= ((Xt—ZAt_xt—At)z + (yr—ZAt_Yt—At)z>o‘5 (7)

AP = fo{pe(Xe, Ye) De—1 Xe—aes Ye—ar) Pe—a(Xe—2a6: Ye—2ac)} =
[{pe(xe,Ye) —De1 Ke—ae Ye—ae) } + {Pe—ne Xe—ae Ye—ae) —P}/2

—2At(Xe a0 Vi—2a1)}

8)

The V,_; vector corresponds to advection for one specific
pixel proae (Xe-2at » Ye-24¢) at time t-2At moved to pe-ae (Xe-ac
Vear) at time t-At. The V; represents the advection field
between time t-At and t. As soon as the advection vectors for
the three time steps are known, a function f;, which can be a

Information for ten storms/events, including time, length, and states damaged by the storm. The fifth column shows if the thunderstorms caused fatality damage,
the sixth column shows if the damage exceeded more than 1 million dollars, and the last three columns show if the thunderstorms had severe winds, flash

flooding, and/or tornados (source: National Climate Data Center).

Event Time [mm/dd/yy] Length [hr] States Death Damage> Severe Wind Flash Flood Tornado
1M
1 05/08/09 18 KS, MO, KY, VA Yes Yes Yes Yes Yes
2 06/[09-10]/09 18 KS, MO No No Yes Yes Yes
3 06/[13-14]/10 24 OK, KS Yes Yes Yes Yes Yes
4 06/[22-23]/10 21 NE, SD, 1A, WI No Yes Yes Yes Yes
5 08/[13-14]/10 12 KS, MO, IL No No Yes Yes No
6 09/[13-14]/10 25 NE, 10, KS, MO, OK, AR No No Yes Yes Yes
7 06/[18-19]/09 27 NE, IA, IL, IN, KY,NC, GA Yes Yes Yes Yes Yes
8 07/[24-25]/09 24 MN, IA, W, IL, IN No Yes Yes Yes Yes
9 08/08/09 18 MN, WI, IL, IN, MI, 1A Yes Yes Yes Yes Yes
10 08/[25-26]/09 19 CO, KS, NE No No Yes Yes No
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Fig. 5. Four selected severe storms: (a) Event 1:20090508-1150 [UTC], (b) Event 2: 20090609-1750 [UTC], (c) Event 3: 20100614-0550 [UTC], and (4) Event 4:
20100623-0450 [UTC], along with the spatial domain in which the storms produced significant rainfall (Rainfall Unit=mm/hr).

linear combination of both V,_; and V,, has been applied. At is
the time interval between two consecutive time steps. PBN
uses an average of two advection vectors (Vp) as a reasonable
estimation for storm extrapolation in a Lagrangian reference
frame (Fig. 2).

The current time step t and the previous time step t-At
could provide the advection field of each pixel. Nevertheless,
PBN applies three time steps: t, t-At, and t-2At. Three
previous successive time steps provide two advection fields,
including V. and V, which are able to capture both the
direct and rotational movement of each storm.

The PBN algorithm applies both the advection field (Vp)
and the storm evolution (rainfall-intensity changes). In
Egs. (6)-(8), the function f, uses three previous time steps,
t, t-At, and t-2At, to extract Ap. Function f; is used to predict
the rate of rainfall p; 4 ¢ (X + a6 Ve +a¢) for time t + At at each
rainy pixel based on the rainfall rate of that pixel in the last
three time steps. The f, is a function of the rainfall-rate
variation for a pixel located at pe; (Xean Yead) time t-At
moved to p; (x, y.) at time t and the variation between time
t-At and t-2At. For each pixel, the average of these two trends

has been used for intensity prediction at t +At. The same
trend can be applied for time steps t +2At, t +3At, etc., until
the rainfall rate reaches some predefined maximum thresh-
old. If the trend is negative, there will be also a minimum
threshold that is equal to zero rainfall.

Using Ap and V,, the PBN algorithm projects the storm's
length of prediction up to 3 hrs (180 min). The PBN
algorithm updates predictions every 10 min. According to
Eqgs. (6)-(8), similar advection velocity (V,) and the
intensity-changes trend (Ap) for the first time step (t +nAt;
n =1) will be applied for the next time steps (t +nAt), where
(n=2,3,..,18).

Given the fact that the proposed PBN is a Lagrangian
dynamic model, each pixel should be extrapolated in a
Lagrangian reference system. The V), the average of V,_,, and
V,, is the advection vector for a specified pixel between t-2At,
t-At, and t-At, t, respectively (Fig. 2). To reduce the projection
noise and fill probable discontinuities, a low-pass spatial
filter (3x 3) is applied. Each rainy pixel will be considered as
a center of a 3 x3 window of pixels, and the advection field
for the window (V) will be an average of the advection fields
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Table 2 it is always concentrated on that storm. Because this is an
The contingency table, F=Forecast, O =0Observation, Tr is the predefined event-based study to evaluate the PBN algorithm, using a
rainfall threshold. . . . ’
dynamic window creates less error. The pixel-based algo-
Event Condition rithm is updated every 10 min as new radar imagery exists
Success FoTrand OSTr using three conseFutlvg time steps (t=current time) and
False Alarm F>Tr and O<Tr (t-At, t-2At = previous time steps).
Failure F<Tr and O>Tr The pixel-based tracking algorithm possesses a template-
Correct Negative F<Tr and O<Tr matching characteristic that operates based on the maximum
correlation between meshes in two consecutive images. As
opposed to the other tracking techniques, the PBN algorithm
V, for pixels inside the window. A larger filter could not be does not require any nonlinear programming, which is
applied effectively for the prediction of small-scale storms. computationally time consuming and erroneous. Two consec-
For every event, there is a moving window traveling with utive images should have a suitable time interval to correctly
each specific storm throughout the storm lifecycle. The retrieve the rainfall-advection field. The current study shows
dynamic window moves with the storm in such a way that that At=10 min is reasonable for retrieving the advection field.

(a)

20090508-1000 [UTC]

0 20 40 60
[mm//hr]
100 -99 98 -97 -96 -95 -94 93 92 91 -90
(b) (©)
40 2 L ]
39r 39+ \< .
38} 38} ,a-’{
37 37 TG
36 36 4
35 35

2100 -99 98 97 96 95 -94 -93 -92 91 -90

(e)

(d)

40 40 \
39+ 39t )
38+ 38t A e
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36+ ' 2 36t

3

i i i 1 1 i i i A 35 i i i i i i i i i
-100 -99 -98 -97 -96 -95 -94 -93 -92 -91 -90 -100 -99 -98 -97 -96 -95 -94 -93 -92 -91 -90

Fig. 6. (a) Event 1 on 8 May 2009, 10:00 AM [UTC] observation, Q2 1 [km]. (b, ¢) PBN + 30 [min] prediction and 5 and 20 [mm/hr] thresholds. (d, e) WCN + 30
[min] prediction with 5 and 20 [mm/hr] thresholds (Rainfall Unit=mm/hr).
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Table 3
PBN and WCN algorithms, POD and FAR, for the event shown in Fig. 6, using
two rainfall thresholds 5 [mm/hr] and 20 [mm/hr].

Nowcasting POD FAR Nowcasting POD FAR
Rain: [mm/hr]

PBN, Rain>5 53 51 PBN, Rain>20 41 62
WCN, Rain>5 44 61 WCN, Rain>20 30 77

The PBN algorithm tracks the storm behavior during the past 20
(=2At) min, the historical knowledge of each particular storm
will be used to extrapolate storms (Grecu and Krajewski, 2000).

The proposed algorithm for storm tracking and nowcasting
is discussed below.

2.2. Pixel-based storm tracking

There have been some efforts to combine mesh-based and
hierarchical techniques in order to enable better tracking of
small-scale complex features, such as scaling, rotation, and
shear (Toklu et al., 1996; Bergen et al., 1992). This paper applies
a version of a newly developed pixel-based advection algo-
rithm to identify the corresponding location of each rainy pixel
in the previous subsequent image(s) (Bellerby, 2006). The
tracking algorithm operates at multiple spatial resolutions,
initially estimating advection vectors at a very coarse resolu-
tion and then spatially refining the field down to a pixel level. It

(a)

is thus designed to generate a spatially continuous and smooth
vector field that does not suffer from discontinuities at
template boundaries. Moreover, the tracking algorithm is
robust with respect to sparse precipitation fields, and the
initial tracking phase matches large templates and can robustly
estimate the movement of a sparse field. The finer-scale stages
of the tracking scheme are limited to rainy areas and
constrained by the initial phase in a manner that prevents
false matches.

In fact, the multiscale nature of the tracking algorithm
could make it relatively robust with respect to the skewness
problem and matching high precipitation values that has a
disproportionate effect on the overall pattern match. How-
ever, to minimize the tracking algorithm probable sensitivity
to the data structure, the PBN algorithm applies, smoother
log transformed data field. The current study uses log(R); in
which R is the rain rate.

Then, the applied algorithm uses coarse-resolution quadri-
lateral meshes fully draped over the first image (time = t-At)
called the Baseline image, and the subsequent one is called the
Reference image (time =t). A rectangular-window, translation-
al, correlation-matching procedure then deforms the rectangu-
lar mesh covering the preceding image into a convex
quadrilateral mesh, optimizing the correspondence between
the two images at and around equivalent mesh nodes. The
meshes over both images are interpolated to twice their
previous spatial resolution, and the correlation-matching
procedure is repeated, this time taking into account local

(b)
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distortions represented by the non-rectangular mesh. Incorpo-
rating these local distortions enables the tracking algorithm to
accommodate rotational and shear effects, in addition to
translations. The interpolation and matching stages iterate
until the mesh resolutions reach the original image (Q2 radar
data) resolution. Later iterations of the algorithm interpolate
both images to four times their original spatial resolution using
bi-cubic splines before starting the correlation-matching proce-
dure. At the end of the final iteration, each rainy pixel location
(xpy:) in the main image is associated with an equivalent
location (X¢anYeac) in the same storm in the preceding image.
Additionally, the algorithm is capable of deriving the reverse
mapping, relating each pixel in the preceding image to an
equivalent location in the current image from the same pair of
final meshes without re-running the tracking procedure
(Bellerby, 2006). The 2-D rainfall-advection algorithm is
computationally efficient and has shown to be both robust in
the presence of image rotation and shear (Zahraei et al., 2012,
submitted for publication). Fig. 3 illustrates the key stages of the
procedure for an arbitrary iteration (Bellerby, 2006), including:

(1) A correlation-based, template-matching algorithm is
used to relate the closest point of each Reference mesh
to the center point of each Baseline image mesh.
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(2) The Reference and Baseline meshes are replaced based
on central and closest match points identified in Step
1.

(3) Adjacent nodes in the new Reference mesh are
checked for consistency. Nodes which are inconsistent
are replaced by alternative cross-correlation matches.

(4) Concave quadrilateral meshes/elements in the Reference
mesh will be removed.

The current study applies the extracted rainfall advection
fields to predict storm advection and intensity.

Fig. 4 illustrates the application of the pixel-based
tracking algorithm to track a severe storm in three consec-
utive radar images. Fig. 4d and e show that the tracking
algorithm could successfully track the storm advection in the
pixel scale.

3. Data and Case Studies

The next step involves the application and testing (verifica-
tion) of the proposed PBN algorithm presented above. For this
purpose, radar observations are used. Radar images have been
used frequently in detecting severe storms. For this study, the Q2
radar-based quantitative precipitation estimation data set with
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Fig. 8. Correlation Coefficient (C) vs. lead time [min], in which the larger values represent better prediction: (a) Storm 1, (b) Storm 2, (¢) Storm 3, and (d) Storm 4.

Three models: PBN, WCN, and PER.
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0.01° spatial and 2.5-5-min temporal resolution over the entire
conterminous U.S. (CONUS) produced by the NOAA-NSSL is
used (Vasiloff et al., 2007). This study focuses on the application
of the radar-based rainfall products Q2 in nowcasting. The
driving hypothesis is that the selected Q2 is an improved radar
data set which has significantly filtered the effect of contami-
nants, such as insects, anomalous propagation, and ground
clutter (Lakshmanan et al., 2007). This study applies a resolution
of 1 km for each 10 min and evaluates the use of the proposed
PBN algorithm to predict precipitation in storm-scale or
mesoscale atmospheric phenomena. Ten relatively severe
storm events within the CONUS area are selected based on the
reported severe winds, flash floods, or tornados that they have
produced (National Climatic Data Center; ncdc.noaa.gov).
Table 1 shows the studied events. The aforementioned events
occurred during 2009 or 2010, with lifecycles not exceeding
more than 25-30 hrs. All of the events caused major property
damage and/or human fatalities (National Climatic Data
Center; ncdc.noaa.gov). Relatively speaking, the storm events
are small-scale, fast-moving thunderstorms with typically
complicated structures. Although there has been a compre-
hensive study on all events, four storms will be examined more
closely (Fig. 5) due to some specific features. The first storm
(shown in Fig. 5a) is a small-scale, fast-moving thunderstorm.
Its complex structure makes it difficult to segment and track by

using current techniques. The second storm shown (Fig. 5b),
which starts with a localized convective structure, has broken
into several smaller parts that move, rotate, and disappear very
fast in a few hours. The storm produces a significant amount of
rainfall. The third event (Fig. 5¢) is a very unique storm in terms
of its being nearly stationary and slow moving. This storm
produced more than 250 mm of rainfall in approximately 6 hr
over Oklahoma City, OK, resulting in flash flooding in the
urbanized area. The fourth storm (Fig. 5d) is a significant event
that produced severe rainfall and caused flooding in the area.
Despite its large-scale structure, the storm is generated from
some smaller, very fast-moving storms. This storm moves
hundreds of kilometers in a matter of several hours.

4. Verification and Results

The proposed PBN approach is compared with two
nowecasting algorithms that have been presented in the
literature (Montanari et al., 2006). Both of these algorithms
are based on Eq. (1) and are described below.

4.1. Eulerian-Persistence Model (EPM)

The Eulerian-Persistence Model (EPM) or a Persistency
(PER) model assumes that the future rainfall field is equal to
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the last available scan in which all terms in Eq. (1) are eliminated,
except:

Api(x,y)
=0 ©

The PER model is used as a benchmark to evaluate
prediction skill. The PER model assumes that the storm

1 T

— +30 [min] -—-- 460 [min]

09r

08

0.7

0.6

05

04

Correlation Coefficient

03

o s . " " L s
0 5 10 15 20 25 30

Spatial Resolution [km]

Fig. 11. The Correlation Coefficient (C) vs. different spatial resolution [km]
for different lead times [min] using the PBN algorithm. The coarser
resolution has better prediction skill.

movement is negligible and assigns the same forecasted
rainfall intensity as the last available storm imagery. The PER
model is considered to be a reasonable short-term prediction
for stationary storms.

4.2. Lagrangian-Persistence Model (LPM)

Advection is a key element in storm movement and
nowcasting (Austin and Bellon, 1974). The Lagrangian persis-
tence model considers the storm advection while ignoring the
rainfall dynamic changes. The equation can be rewritten as:

M + UX(X,y) w + Vy(Xﬁy)

Ap(x,y)
i 2PV _ g (10)

Ay

It is documented that a uniform Uy and V, over the whole
study domain might be a reasonable approximation for
larger-scale storms (Pegram and Clothier, 2001a, 2001b; Seed,
2003). The LPM model, called WCN in the current study, is used
for comparison with the proposed PBN algorithm (Lakshmanan
et al, 2009). All nowcasting algorithms, including WCN,
proposed PBN, and PER, have been implemented to predict
the rainfall rate in the next 3 hr.

4.3. Verification procedure

A quantitative assessment commonly referred to as model
verification is required to assess the degree to which the
prediction and observation match each other. The model
verification techniques usually use a pair-wise comparison of
prediction and observation values. Given the spatial nature of
radar observations, verification methods capable of quanti-
fying the model performance over a prescribed domain are
needed.

There are two approaches available for spatial verification,
namely pixel-based and object (feature)-based methods. The
pixel-based methods utilize a point-to-point or pixel-to-pixel
comparison between prediction and observation, while the
object-based methods typically model storms as separate
objects. Because each of these verification methods has some
limitations, this study uses both approaches.

4.3.1. Pixel-to-pixel based verification methods

Four performance measures are used for pixel-to-pixel
verification of PBN. They include coefficient of Correlation
(C), coefficient of Efficiency (E), Probability of Detection
(POD), False-Alarm Ratio (FAR), and Odds ratio. They
measure the agreement between forecast (F) and observa-
tion (0) (Legates and McCabe, 1999). The coefficient of
correlation C is defined as:

5~ (0,~0) (F—F)

where the bar represents the average values, and N is the
number of pixels in the prediction domain (Legates and
McCabe, 1999; Grecu and Krajewski, 2000).
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The coefficient of efficiency E is defined as:

S (0,—F)?
E=1-H (12)
S (0—Py)

N
—_

where P is the indicator of the persistency in which there is
no prediction (last available imagery before prediction; e.g.,
time=t). E will be between 0-1, where a value of 1 is a
perfect prediction. A larger E indicates a better agreement
between observation and prediction. However, E will be zero
in the event that the prediction has less skill than the
persistency. This means that the observations are described
better by the persistency algorithms rather than by forecasts
(Legates and McCabe, 1999).
POD and FAR are defined as:

POD = (13)

nf+nh

FAR = (14)

nf,, + ny

where nj, represents the number of hits, nyis the number of
failures, and ng, represents the number of false alarms. Grecu
and Krajewski (2000) stated that POD and FAR are better
metrics for pattern matching. POD shows the ability of the
nowecasting algorithm in prediction of rainy/non-rainy pixels,
based upon predefined thresholds. FAR indicates places in
which the storm is predicted while there is no storm. Hogan
etal. (2009) also indicated that POD and FAR have limitations
in characterizing forecasting skill. Stephenson (2000) repre-
sents the Odds ratio as a complementary verification
measure.

np X Ny
nfu X nf

Odds ratio = (15)

where ng, is the number of correct negative. The Odds ratio
has range between 0 to «, that the greater has the better skill
(Stephenson, 2000). The current study uses the logarithm of
the Odds ratio.

In Table 2, the concepts of hit, false alarm, and failure are
described.

An important issue to point out is that pixel-to-pixel
based measures are not always accurate in terms of their
ability to capture the correspondence between forecasts and
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which the smaller value predicts better.

the verification fields at the pixel level. In other words, if a
model forecast at the pixel level does not compare well with
the available observation, it does not necessarily mean that
the performance is poor. This is especially the case when the
objective is to evaluate the predicted storm's position, along
with its severity/intensity (i.e., precipitation rate) in a
dynamic mode when storms evolve and move very rapidly.
For this reason, other verification measures capable of
assessing the storms as evolving objects (as opposed to
pixel-to-pixel) are required.

The scenario represented in Fig. 6 is intended to demonstrate
the complimentary role of both verification methods in the case
of application of the PBN and WCN algorithms to predict a
thunderstorm (event 1). This storm, as captured by radar
observations (Q2), has a number of high-rainfall cores in which
accurate prediction of their locations can be very challenging. As
previously mentioned, WCN relies on the application of storm
segmentation along with an object-based tracking algorithm
that may overestimate or underestimate storm advection. Fig. 6
compares the prediction capability of both PBN (Fig. 6 b.c) and
WCN (Fig. 6 d.e) for 30 min and 5- and 20-mm/hr rainfall
thresholds. Comparing Fig. 6b-e and also Table 3 shows that the
PBN algorithm has predicted the storm more accurately,
particularly for higher rates of rainfall (i.e., 20 mm/hr, in this

case). To capture these subtle, yet important differences, it is
necessary to apply measures capable of verifying the skill of the
nowcasting algorithms in detecting how storms (treated as
“objects”) correspond to observations. Following is a brief
description of an object-based verification measure which is
intended to overcome the shortcomings of the pixel-based
verification measures for such situations as presented in Fig. 6.

4.3.2. Object-based verification method

Several classes of object-based verification methods have
been introduced (Ebert, 2009; Wernli et al., 2009). In this
study, we implement an object-based verification metric that
illustrates how two predicted and observed storms are either
close or overlapped with each other. To calculate the metric,
it is necessary to set some thresholds to segment the storms
of various intensity levels; no filtering or image modification
is needed (Davis et al., 2006; Zhu et al., 2011).

The evaluation index is calculated by the weighted
combination of two metrics between the observed object
“A” and predicted object “B”, as follows (Zhu et al., 2011):

metr, (A, B) = \distoy (A, B) + \,distpy (A, B) (16)

in which distoy and distpy are overlapped and observation-
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Fig. 14. Average of ten storms, (a) Probability of Detection (POD) vs. lead
time [min]; (b) False-Alarm Ratio (FAR) vs. lead time [min], for thresholds
10, 20, and 40 [mm/hr].

based distances, respectively; A;, A\, are weighting factors,
which are set to 0.5 for A; and A,. Fig. 7 illustrates the metric
definition.

distoy (A,B) = 1/ X i (a—b;)” (17)

where a;;, by are binary variables related to each pixel of sets
A and B; for example, ag;; is 1 if the pixel ij is a member of A
and 0 if not. The pixel ij is in the set A if it has a value greater
than a specified threshold. The overlapping distance is the
root mean square error based on a binary field.

The dist,;, is the average distance for every single pixel of
observation to the predicted set A:

N(0)
dist,,(0,A) = ﬁ%ZFMMA) if N(O)N(A)#0 (1g)
D fﬂmpﬂ or N(A) =0

where m,, is the shortest Euclidean distance between point
o; of the observation pixel to object A. N(O) and N(A) are the
number of pixels in both sets. D is a number greater than the
maximum possible distance. The upper bound will be applied
when the observation or the forecast field is empty.
Following Eq. (19), the observation-based distance will be
set as:

distpy (A, B) = |dist, (0, A)—dist,, (O, B)| (19)

In the metric for verification between two objects,
observation O and forecast A, one of the distpy drops away.
The metric can be applied simply as (Zhu et al., 2011):

metr,(0,A) = Aydist,y (0,A) + A\ dist,, (0, A) (20)

The unit of the distances is in pixel. It may be used in km
based on each pixel dimension.

4.3.3. Discussion of pixel-to-pixel comparisons

The comparisons of PBN vs. the WCN and PER models and
observations for the four measures (C, E, POD, and FAR) are
displayed in Figs. 8-14. According to Figs. 8, 9, and 10, PBN
shows improved performance for shorter lead time, and for
longer lead time (~120-150 min) WCN and PBN perform in
average the same. Figs. 8 and 9 present the comparison
results for C and E measures for the four highlighted events,
respectively. As observed from Figs. 8 and 9, PBN perfor-
mance in the first 80-90 min is consistently better than WCN
and is especially noticeable for storms #1 and #3.

Fig. 10 shows both C and E averaged over all ten events
listed in Table 1. Comparing with other algorithm results, a
correlation coefficient threshold=0.15 is set. The PBN algo-
rithm shows better performance than WCN when compared
against radar observation for the first 90 min. According to
Germann et al. (2006) the scale dependency is an important
factor in nowcasting skill. Usually small-scale features in the
precipitation field have short lifetime. Similarly, the current
case studies are dominated with small-scale short lifetime
features. This is one of the reasons that the forecasting skill
relatively drops after a few minutes.

Fig. 11 presents the averaged correlation coefficients of all
ten events for +30 and + 60 min predictions vs. different
spatial resolutions. The coarser resolution (2, 4, 8, 16, 32 km)
shows better prediction skill. However, the coarser resolutions
might not be able to predict smaller-scale thunderstorms.

The POD of the PBN and WCN algorithms for different
rainfall thresholds of four selected events is given in Fig. 12.
As evident from this figure, in general, PBN is more skillful in
the first 70-90 min; beyond 90-100 min, the skills of both
algorithms are relatively the same.

Fig. 13 illustrates the accuracy of prediction in terms of
FAR. In general, the same conclusion as in Fig. 12 can be
drawn about the performance of PBN when compared
against WCN. Figs. 12 and 13 demonstrate that the proposed
PBN algorithm has promising results for severe storm events.
Fig. 14 illustrates POD and FAR for all ten storms averaged vs.
lead time. Assuming a POD threshold of about 0.1 (10%) and
rain-intensity thresholds of 10, 20, and 40 mm/hr, PBN
provides promising predictions in the first 180, 120, and
80 min, respectively. This is more or less consistent with
previously mentioned metrics that the PBN algorithm is
reliable for the first 1-2 hr.

Fig. 15 also shows the logarithms of Odds ratios for four
events that indicate the PBN algorithm has promising
performance in different rain-intensity thresholds (10, 20,
and 40 mm/hr).

4.3.4. Discussion of object-based metric comparisons
The comparisons of PBN vs. the WCN and PER models and
observations using the object-based verification metric method


image of Fig.�14

432

Log (Odds Ratio)

0.0,
O D P P P © & P S D PO P S
D AP PP S D S @00-&»~,»‘5‘0»

Lead Time [min]

Log (Odds Ratio)

0.0
PSPPI L O PP PP PP P SO S

Lead Time [min]

A. Zahraei et al. /| Atmospheric Research 118 (2012) 418-434

2

Log (Odds Ratio)

Log (Odds Ratio)

35

3.0

25

2.0

15

1.0

0.5

0.0
PEPPP OO PP PP PP

Lead Time [min]

$
K

0.0
S D AP PP © o O D D P o
¥ PLEPLSSLPPF PSS

Lead Time [min]
—+— PBN[10mm/hr]
—ea— PBN[20mm/hr]
—=— PBN[40mm/hr]

--4-- WCN[10mm/hr]
--o- WCN[20mm/hr]
WCN[40mm/hr]

Fig. 15. Logarithm of Odds ratio for both PBN and WCN for four events, 10, 20, and 40 [mm/hr]| thresholds: (a) Storm 1, (b) Storm 2, (c¢) Storm 3, and (d) Storm 4,

in which the larger value represents better prediction.

are displayed in Figs. 16 and 17. As evident from the results,
PBN shows better performance for the different cases. Fig. 16
gives the normalized object-based verification metric vs. lead
time for the four selected events and for all three algorithms.
Results reveal that PBN maximizes predictability of storms as
compared to PER and WCN in all cases, except storm #3
(Fig. 16¢), which is a quasi-stationary storm. It is also
encouraging that the PBN algorithm outperforms other
algorithms, particularly as the rainfall thresholds increase
from 10 to 40 mm/hr. In higher rainfall rates (threshold =20,
or 40 mm/hr), there is a greater gap between PBN and WCN.
The PBN is able to predict high-rainfall storms more accurately.

Fig. 17 displays the overall verification results using the
object-based verification metric for the average of all ten
thunderstorms. In order to generalize the findings with
respect to the forecast capability of PBN as a function of
storm intensity, two metric thresholds were chosen and
tested. For relatively light-rainfall rates (up to 10 mm/hr)
and values of the metric up to the threshold=0.2, the PBN
algorithm appears to give better performance in the first

60 min. In relatively heavier-rainfall rates (up to 40 mm/hr),
the object-based verification metric values up to the
threshold =0.35 can be selected, which suggests that the
forecast made by PBN is reliable up to 30 min.

5. Summary and Conclusions

In this manuscript, we introduce a new nowcasting
algorithm named Pixel-Based Nowcasting (PBN) to improve
the predictability of severe thunderstorms. The proposed
PBN algorithm is particularly suitable for very short-duration
forecasts useful for hydrological modeling applications, such
as flash-flood forecasting. In testing the PBN prediction
capabilities, ten severe storms were selected for their
features, including relatively short lifetime, smaller-scale,
damaging winds, and rainfall. The performance of PBN was
compared against two other models, namely the WCN and
PER algorithms. Two verification methods, pixel-based and
object-based, were employed to evaluate different aspects of
each algorithm as compared to radar observations.
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Fig. 16. Metric vs. lead time for different rainfall thresholds: 10, 20, and 40 [mm/hr]: (a) Storm 1, (b) Storm 2, (c) Storm 3, and (d) Storm 4, in which the better

prediction has a smaller error metric.

The main conclusion from this research is that PBN shows
superior performance over the other two models examined
in this study. Following is a summary of the more specific
conclusions:

* The pixel-based verification parameters justify the applica-
bility of the proposed PBN model in the first ~90 min for
forecasts of thunderstorms.

» The object-based verification metric shows that the PBN
algorithm provides promising performance in nowcasting
both light- and heavy-rainfall storms. Based on this study,
PBN shows promising performance in nowcasting intense
storms in the first 30 min. These events might be associated
with catastrophic events (e.g., tornados), for which it is
very important to accurately predict in the short term.

—— PBN [10mm/hr]
— — = WCN [10mm/hr]
--------- PER [10mm/hr]
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Metric
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Fig. 17. Object-based metric verification for the average of all ten
thunderstorms vs. lead time; 10, 20, and 40 [mm/hr] rainfall thresholds
have been tested. In light rainfall (the 10 mm/hr), the difference between
WCN and PBN is less than the difference in high rainfall (20, 40 mm/hr). The
better prediction has a smaller error metric.

Given the object-based verification metric, the difference
between PBN and comparisons algorithms in severe rainfall
is more than lighter rainfall, which means that the algorithm
may outperform other nowcasting techniques, particularly in
more severe events.
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