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Abstract Soil moisture plays a key role in water and

energy exchange in the land hydrologic process. Effective

soil moisture information can be used for many applications

in weather and hydrological forecasting, water resources, and

irrigation system management and planning. However, to

accurate modeling of soil moisture variation in the soil layer

is still very challenging. In this study, in situ and remote

sensing information of near-surface soil moisture is assimi-

lated into the Noah land surface model (LSM) to estimate

deep-layer soil moisture variation. The sequential Monte

Carlo-Particle Filter technique, being well known for capa-

bility of modeling high nonlinear and non-Gaussian pro-

cesses, is applied to assimilate surface soil moisture

measurement to the deep layers. The experiments were car-

ried out over several locations over the semi-arid region of

the US. Comparing with in situ observations, the assimilation

runs show much improved from the control (non-assimila-

tion) runs for estimating both soil moisture and temperature

at 5-, 20-, and 50-cm soil depths in the Noah LSM.

Keywords Soil moisture � Land surface model � Data

assimilation � Sequential Monte Carlo

Introduction

Soil moisture is a key element in land surface hydrologic

process, and it plays a vital role in water and energy cycles.

Providing accurate soil moisture is essential for improving

mathematical modeling for weather and hydrological fore-

casting, climate prediction, water resource and irrigation

management/scheduling, and agriculture product estimates

(Narasimhan and Srinivasan 2005; Walker and Houser

2001; Beljaars et al. 1996; Drusch 2007; Mahfouf 2010;

Dirmeyer 2000; Koster and Suarez 2003; Rosenzweng et al.

2002). Field-based soil moisture measurements are not

available for most of practice. Remote sensing of soil

moistures from active or passive microwave data are

becoming available but are with uncertainty and limited to

provide top layer soil wetness. Modeled soil moisture can

get gridded values and reach to deep soil layers. However,

previous studied indicated that current land surface models

(LSMs) have deficiencies to accurately model the soil

moisture variation. A promising way is to assimilate remote

sensing and observation moisture into LSM to improve

model accuracy. In this study, we have evaluated the top

layer soil moisture estimation from the Advanced Micro-

wave Scanning Radiometer-Earth Observing System

(AMSR-E) on the NASA EOS Aqua satellite and apply

them to retrieve deep-layer soil moisture as well as other

fluxes using the Noah land surface hydrologic model and

advanced data assimilation techniques.

Data assimilation is an analytic method for merging

uncertain model predictions with imperfect observational

data in a way that is consistent with a model system’s

physical descriptions and permits better estimates and

reduced uncertainty (Liu and Gupta 2007; Reichle et al.

2008). Recently, data assimilation methods have been used

to integrate ground-based, airborne, and especially satellite

observations of near-surface soil moisture or brightness

temperature into LSMs. For example, Walker et al. (2001)

have assimilated remotely sensed near-surface soil moisture

into a LSM using the Kalman Filter (KF). Reichle et al.

(2007) had assimilated surface soil moisture retrieved from
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AMSR-E into Catchment land surface model (CLSM); they

found that soil moisture estimated from data assimilation is

better than that retrieved from satellites and from model

control runs.

Several studies have evaluated data assimilation meth-

ods. Sabater et al. (2007) assimilated surface soil moisture

from the Surface Monitoring of the Soil Reservoir Exper-

iment (SMOSREX) into the Interaction between Soil,

Biosphere, and Atmosphere Scheme (ISBA) LSM to

investigate root zone soil moisture. They used four

assimilation methods, including the variational methods,

KF, extended KF (EKF), and ensemble KF (EnKF) and

suggested that 1D-VAR is the best and that EnKF is a

‘‘promising technique.’’ Reichle et al. (2008) have used

adaptive EnKF to assimilate soil moisture into CLSM, and

suggested that the Adaptive EnKF method can generally

identify model and observation error variances and

improve assimilation estimates when compared with EnKF

output. Besides the observation errors (e.g., remote sens-

ing-retrieved soil moisture), Reichle et al. (2004) and Ko-

ster et al. (2009) found systematic differences in soil

moisture between the observations and LSM outputs. Ko-

ster et al. (2009) also found that these systematic differ-

ences vary depending on many factors, such as satellite

sensors, retrieval algorithms, and LSMs, which have posed

challenges for combining these datasets.

Both KF and EnKF assume that all probability distri-

butions involved are Gaussian, whereas most physics

models are non-linear and non-Gaussian. When a nonlinear

relationship exists between a state and observed data,

EnKF provides less effective simulation (Jardak et al.

2010). However, Sequential Monte Carlo-Particle Filter

(SMC-PF) can be more effective than KF and EnKF in

modeling highly nonlinear and non-Gaussian (Arulampa-

lam et al. 2002; Doucet et al. 2000). This study explores the

use of PF for soil moisture data assimilation. Top layer soil

measurements from remote sensors are used in the data

assimilation to improve estimation of soil moisture and

temperature of deeper layers.

The scope of this study is described as follow: ‘‘Develop

data assimilation approach in land surface hydrologic

modeling’’ section describes the LSM and data assimilation

techniques used. It covers a brief discussion of Noah land

surface process model, presenting the Bayesian SMC-PF

approach for data assimilation. ‘‘Study area and data for the

experiment’’ section describes the data used, including in

situ measurement and remote sensing data, in the case

study. Case studies were implemented for specific testing

sites in California and in ARS Walnut Gulch watershed,

where ground soil moisture profile measurements are

available for validation. Finally, discussion and conclu-

sions are given in ‘‘Case study’’ section.

Develop data assimilation approach in land surface

hydrologic modeling

Soil moisture estimation from Noah LSM

In this study, Noah LSM is used as the physical model.

There are practical reasons for using Noah LSM model for

this study. For example, Noah is broadly used either in

standalone or in coupled weather and climate model (e.g.,

WRF and GFS); further many land data assimilation sys-

tems have Noah LSM as physical model also (e.g.,

NLDAS, GLDAS, LIS, and HRLDAS).

In our experiment, Noah LSM is used for DA exper-

iments to estimate soil moisture of testing sites. The

Noah LSM combines the diurnally dependent Penman

potential evaporation approach, the multilayer (4-layer)

soil model, and the modestly complex canopy model

(Chen et al. 1997). In the canopy model, Noah prescribes

the vegetation indices (e.g., greenness coverage fraction,

vegetation types, roughness, and albedo) while modeling

canopy conductance as a function of soil moisture

availability, solar radiation, air temperature, and humidity

(Chen and Dudhia 2001). Noah estimates soil tempera-

ture using the thermal diffusion equation and parame-

terizes thermal conductivity based on Peters-Lidard et al.

(1998). Noah obtains the surface temperature by resolv-

ing the energy balance equation, and calculates surface

flux exchange coefficients using similarity theory-based

stability functions (Chen et al. 1997). Soil moisture is

estimated using Richardson’s equation, while the surface

runoff and infiltration methods are based on Shaake et al.

(1996). Details about the Noah LSM can be found in

Chen and Dudhia (2001) and Ek et al. (2003). Here, we

focus on certain aspects that are most relevant to soil

moisture estimation. The Noah LSM estimates top soil

layer as:

dz1

os

ot
¼ �D

os

oz

� �
z1

�Kz1
þ Pd � R� Edir � Et1 ð1Þ

where s is volumetric soil moisture content, dz1
is the

topsoil layer thickness, Pd is the precipitation not inter-

cepted by canopy (including condensation), Et1 is the

canopy transpiration taken by the canopy root in the top

layer, Edir is the direction of evaporation from ground

surface, D is soil water diffusivity, and Kz1
is soil water

hydraulic conductivity from the top layer to the second soil

layer. At the bottom soil layer, the equation is very similar

to Eq. 1 but, first, without the last four terms on the right

side, second adding soil water hydraulic conductivity from

the third layer to the bottom layer, and finally, letting the

soil water hydraulic conductivity from this layer become

the base flow.
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Sequential Monte Carlo-Particle Filter

Both KF and EnKF assume that all probability distributions

involved are Gaussian, while most physical models are

nonlinear and non-Gaussian. Second, when a nonlinear

relationship exists between a state and observed data,

EnKF is not entirely effective. In such contexts, particle

filters may have better advantages than KF and EnKF

(Jardak et al. 2010). A general dynamic system, like Eq. 2,

can be represented by the state innovation and measure-

ment process, as expressed below:

Dynamic state equation : xt ¼ f ðxt�1; vtÞ ð2Þ
Measurement equation : zt ¼ hðxt;wtÞ ð3Þ

where xt is an n-dimensional vector that consists of the

system’s state variables at a particular time t; f(�) and h(�)
are nonlinear state and measurement functions; and vt and

wt are process and measurement noise, respectively. DA

makes available a set of discrete observations Zt ¼
½z0

1; z0
2; . . .; z0

t�1; z0
t � at time t and the preceding time steps,

in which z0
t is an m-dimensional vector formed by the

variables measured in the system.

To adopt the dynamic process in Eq. 3, we could assume

that soil moisture content and soil temperature are the state

variables, while the process measurements are available

through limited satellite measurements of surface temper-

ature and soil moisture, along with in situ observations of

soil moisture and ground water levels. Stochastic assimi-

lation seeks the conditional probability density function

(pdf), pðxtjZtÞ, that describes the model state’s probability

distribution, which is associated with all the observations

Zt. The Sequential Bayesian Filter is a stochastic approach

to obtain the ‘‘posterior’’ pdf, pðxtjZtÞ, for a state vector xt

of a system at a particular time t. In the prediction stage,

assuming the last measurement z0
t is not yet available, the

conditional pdf of xt is calculated as:

p xtjZt�1ð Þ ¼
Z

p xtjxt�1ð Þp xt�1jZt�1ð Þdxt�1: ð4Þ

The posterior pdf is obtained by updating the prior pdf

using the measurement z0
t via Bayes’ rule:

p xtjZtð Þ ¼ p xtjz0
t ; Zt�1

� �
¼ p ztjxt; Zt�1ð Þp xtjZt�1ð Þ

p z0
t jZt�1

� � : ð5Þ

SMC-PF methods are capable of providing posterior

probability distributions of variables even for highly

nonlinear models with a non-Gaussian error structure.

The posterior distribution is revised from the initial (given)

pdf at each time step by the likelihood function, which is

calculated from the measurements z0
t (t = 1, 2,…,t) and

gives the better-predicted xt values higher weights

(probability). The Monte Carlo (MC) approach is a

numerical method that solves the pdf values at discrete

points in the system’s state-space. In the discrete format

xt ¼ xi
t, where i is the sample index, Ns is the sample size,

and gi
tjt ¼ p xi

tjZt

� �
, Eqs. 4 and 5 become:

gi
tjt�1 ¼

XNs

j¼1

g j
t�1jt�1

� p xi
tjx

j
t�1

� �
; ð6Þ

gi
tjt ¼

gi
tjt�1p ztjxi

t�1

� �
PNs

j¼1 g j
tjt�1
� p ztjx j

t

� � : ð7Þ

During simulation PF may be characterized by

significant degeneracy and requires resampling to

redistribute the existing samples. Sequential importance

resampling (SIR) removes samples with low importance

weights (low probability) and assigns more samples to

those of high importance weights (high probability). The

new samples (gi�
t ) have uniform weights (1/N), which, with

a number of repeated samples, are proportional to the

importance weights gi
t (Liu and Chen 1998; Arulampalam

et al. 2002). A criterion can be provided to evaluate PF

filter degeneracy based on the effective sample size

(Arulampalam et al. 2002; Doucet et al. 2000). As the

resampling process only redistributes samples in the

existing points, which lose diversity among the particles,

after several resamplings, redistribution of particles is

needed. A regularization step can be used to further

diversify the existing particles.

PF filters have been shown to be very flexible for

assimilating data in numerical model predictions (Doucet

et al. 2000; Moradkhani et al. 2005; Kalnay 2003; Weets

and El Serafy 2006; Hsu 2011). PFs have been applied to

hydrologic simulation and found to be very useful for

estimating uncertainty in state variables. Weets and El

Serafy (2006) have shown that the SMC-PF with residual

resampling (RR) outperforms EnKF when the sample size

increases. In applications to nonlinear distributed model-

ing, a large number of state variables were estimated.

Several techniques have been reported as providing effec-

tive ensemble prediction of ocean and atmospheric models.

In this study, PF assimilation is applied to Noah LSM for

soil moisture estimation.

Land surface hydrologic model and data assimilation

Accurate modeling of soil moisture is critical to our

understanding soil–vegetation–atmospheric interactions,

hydrology, and prediction of water availability. Due to the

complexity associated with soil physics and to uncertain-

ties in data and parameterization schemes, LSM simula-

tions of soil moisture show marked deviations from

observations, especially in semi-arid regions. In Noah
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LSM, 19 state variables are included in the simulation. The

state variables and parameters include:

xt¼ hi
s;h

i
l; T1; Ti; Albedo; SWE; SNODH; Ch; Cm; CMC

� �
;

ð8Þ

hi
sði ¼ 1; 4Þ is the total soil moisture at each layer, hi

lði ¼
1; 4Þ is the liquid water content at each layer, Tiðk ¼ 1; 4Þ
is soil temperature at each node, SWE is snow snowpack

snow water equivalent (SWE), SNODH is snowpack depth,

Ch, Cm are surface exchange coefficients for heat (mois-

ture) and momentum. CMC is canopy moisture content. T1

is ground/snowpack/canopy effective temperature. Skin

temperature (T1) and topsoil moisture (hi
l) can be obtained

from remote sensing data and they are assimilated into the

Noah LSM.

We can conduct multi-sensor and multi-scale data

assimilation in the Noah LSM. The simulation experiments

are set to grid points where surface soil moisture mea-

surements from AMSR-E of Aqua satellite are available.

Study area and data for the experiment

Ground data and validation sites

Two case studies were included in this study. The first case

is to test the concept using in situ measurement, at two

Natural Resources Conservation Service (NRCS) gauge

points in California, while the second case extends from in

situ measurement to using remote sensing data. Gauge

point from US Department of Agriculture (USDA) Agri-

culture Research Service (ARS) is used. Study area and

selected gauge sites are shown in Fig. 1.

The NRCS test sites

In some NRCS gauge sites, besides, precipitation and

SWE, soil moisture and temperature at 5, 20, and 50 cm

are measured daily. Two gauge sites with continuous

measurement of daily and hourly data for SWE and pre-

cipitation since 1980s and soil moisture data since year

2000 are selected for this experiment: they are (1) gauge

ID#518 at 38.917�N, 119.9167�W, and elevation 8,582-

feet high and (2) ID#697 at 38.5�N, 119.633�W, and ele-

vation 7,736-feet high.

The USDA ARS test site

The Walnut Gulch Experimental Watershed of USDA ARS

is one of the most intensively instrumented semi-arid

experimental watersheds in the world (Moran et al. 2008

Garcia et al. 2008; Goodrich et al. 2000; Kustats and

Goodrich 1994). The extensive hydro-meteorological

instrumentation covering the WGEW dates primarily from

the early 1960s. One gauge site (Lucky Hill; 31.735�N,

110.052�W; elevation 4,494-feet high) is selected for this

experiment.

Satellite data

Surface soil moisture and surface temperature data gener-

ated from AMSR-E observation at daily and 0.25�are used

in this study. The data set is provided by Owe et al. (2008).

The retrieved method for this dataset uses a forward

modeling optimization procedure to solve a radiative

transfer equation for both soil moisture and vegetation

optical depth (Owe et al. 2008).

Forcing data

The proposed areas include test sites where meteorological

fields (including precipitation, solar radiation, surface

pressure, temperature, humidity, and wind) have been

observed since 1990. For the other grid points without data,

North American Land Data Assimilation System (NLDAS)

forcing data were used.

ID# 518

ID# 697

Lucky Hill
USDA ARS

Fig. 1 Test sites: gauges from NRCS (2 gauges; ID#518 at

[38.917�N, 119.9167�W]; ID#697 at [38.5�N, 119.633�W]) and

USDA ARS (1 gauge; Lucky Hill, Walnut Gulch at [31.735�N,

110.052�W]) with continuous measurement of soil moisture data are

used in this experiment
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Case study

Case study based on in situ observation: NRCS test site

Data from two NRCS sites are collected and evaluated.

They are discussed below. Figure 2 shows assimilation of

5-cm soil moisture from the Noah LSM using SMC-PF

with SIR resampling strategy at one NRCS gauge site,

gauge ID 697 at (38.505�N, 119.626�W) and 7,736-feet

elevation. A control run includes forcing data and default

settings for the simulation without using available top layer

soil moisture observation. The control run (black line) fits

well to the wet period of observation (red line), but

underestimated soil moisture during the dry period (see

green circles in the figure). SMC-PF (blue lines) gives

improved estimation than that of control run at 5- and

20-cm depths. For the timer period of soil moisture with

high variability, being highlighted with green circles,

SMC-PF simulation fits very well to observations. At

50-cm depth, the SMC-PF estimation shows improvement

from control run for most of the time, but could not catch

soil moisture with high variability from observations (see

highlighted green circle). Because of water and energy

exchange near the surface layers are more active, the var-

iability of soil moisture at upper layers usually is much

higher than the lower layers. The reason why there is a

significant variability at the lower layer (see green circle at

50-cm layer) than upper layers is not clear.

Figure 3 shows the observed and simulated soil mois-

ture estimation at another NRCS gauge site (ID 518)

located at a 38.917�N and 119.9167�W. Comparing with

observation (red line), the default control run (black lines)

is underestimated soil moisture significantly at all evalua-

tion layers (5, 20, and 50 cm). SMC-PF simulation gives

very good estimation of soil moisture for all layers.

Soil temperature of the test site mentioned above (ID 518)

is plotted in Fig. 4. Clearly, the control run (black lines)

overestimated soil temperature at all test layers. SMC assim-

ilation has improved both soil temperature (Fig. 4) and soil

moisture estimation (Fig. 3) from control run substantially.

Three statistics were calculated to evaluate the estima-

tion soil moisture before and after assimilation. They are

mean value, root mean square error (RMSE, and bias

estimates of soil moistures (m3 m-3). Table 1 shows the

evaluation statistics based on experiment of two NRCS

sites. It shows that, after model with assimilation of top

layer surface soil moisture, the estimated soil moisture of

all layers are improved from the model control runs

significantly.
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Fig. 2 Soil moisture time series at different layers (5-, 20-, and

50-cm depths) at the station ID 697 (38.505�N, 119.626�W) Noah

LSM control run (ctrl.—black line), SNC-PF assimilation run

(SMC—blue line), and ground observations (obs.—red line)
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Fig. 3 The same as Fig. 1 but for Station ID 518 (38.924�N,

119.916�W)
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Case study based on remote sensing observation

Case study shown above demonstrates the assimilation of

top layer soil moisture has improved soil moisture esti-

mation of low layers. The follow on examples further

evaluate using AMSE-R remote sensing soil moisture

estimation for improving estimation of lower layer soil

moisture.

Figure 5a shows the soil moisture at 5-cm layer from

observed, remote sensing AMSR-E retrieval, Noah control

run, and AMSR-E assimilated. Comparing to ground

measurement (red line), AMRR-E soil moisture retrieval

(green line) provides reasonably well for high values but

underestimated the low moisture content. Control run

(black line) without assimilation of top layer soil moisture

information, however, has largely overestimated the

amount. Assimilation using AMSR-E soil moisture prod-

uct, on the other hand, provides a better estimation than

that of control run. The assimilated estimates are plotted in

between the control run estimates and remote sensing

observation (see blue line). Although assimilation using

SMC-PF overestimate high soil moisture contents, it pro-

vides improved estimates from control run.

Figure 5b–d shows the observation and model estimates

of soil moisture at 20-, 50-, and 100-cm depths, respec-

tively. Overall, assimilate top layer AMSR-E soil moisture

measurement has consistently improved soil moisture

estimation of low layers from no assimilation control run.

For a close look, the gauge observed soil moisture for soil

depth at and below 50 cm is becoming stable (see Fig. 5c,

d). This implies that the impact of surface forcing (pre-

cipitation) to the soil moisture is less sensitive at the depth

of 50 cm and below, unless heavy storm events occur.

Input flow from surface can be evaporated to atmosphere

before reaching to the deep soil layers. Comparing to gauge

soil moisture observation, Noah model estimates are highly

variable at 50-cm layer and finally show stable (flat) at

100-cm layer. Although adding soil moisture assimilation

improves model soil moisture estimation, the behavior

related model structure and parameter settings require

further investigation.

An evaluation summary is listed in Table 2. Comparing

with site-observations, the modeled results with remote

sensing data assimilation show significant improvement in

mean, RMSE, and Bias for all layers (5, 20, 50, 100 cm), as

comparing to model results with control run.
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Fig. 4 Soil temperature time series at different layers (5-, 20-, and

50-cm depths) at the station ID 518 (38.924�N, 119.91647�W),

California. Noah LSM control run (ctrl.—black line), SNC-PF

assimilation run (SMC—blue line), and ground observations (obs.—

red line)

Table 1 Evaluation statistics

for two NRCS gauges (m3 m-3)
Gauge site 5 cm 20 cm 50 cm

Mean RMSE Bias Mean RMSE Bias Mean RMSE Bias

#518

Soil moisture

Obs. 0.39 0.39 0.37

Ctrl. 0.21 0.20 -0.18 0.19 0.20 -0.2 0.15 0.22 -0.22

SMC-PF 0.40 0.08 0.01 0.39 0.03 0.0 0.39 0.04 0.02

#697

Soil moisture

Obs. 0.36 0.38 0.29

Ctrl. 0.30 0.12 -0.06 0.30 0.11 -0.08 0.26 0.10 -0.02

SMC-PF 0.38 0.04 0.02 0.36 0.04 -0.02 0.35 0.08 0.06
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Figure 6 shows surface soil moisture variation from pre-

monsoon to post-monsoon period, July to September, from

remote sensing AMSR-E estimation over Northern Mexico

and Southern Arizona. Monsoon starts in May in southern

Mexico and continues to move north to reach Arizona in

June. Remote sensing observation from AMSR-E shows

the time evolution of the wetness of the top layer soil

moisture during the monsoon period.

Figure 7 displays the comparison of spatial distribution of

soil moisture from AMSR-E, Noah model control run, and

assimilated SMC-PF run, over the time period of Aug 14–17,

2005. AMSR-E soil moisture estimates show good agree-

ment with observed soil moisture on the test site. Control run

generate higher than observed soil moisture at test point.

Spatial distribution of soil moisture from three estimations is

similar, but remotely sensed (AMSR-E) estimation gives

driest value at the top layer. Not that the top layer for Noah

model is defined at 5-cm depth, while remote sensing esti-

mation from AMSR-R sensors are relevant to soil moisture

on the top surface layer (e.g., 0–2 cm). Discrepancies

between AMSR-E and model estimation is possible.

Figure 8 shows the estimated soil moisture from control

run and SMC-PF simulation at 20 and 50 cm. Similar to the

estimates at 5-cm topic soil layer, SMC-PF simulation

generates lower soil moisture than control run.
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Fig. 5 Soil moisture time series at a 5-, b 20-, c 50-, and d 100-cm

depths. AMSR-E retrieval (green line), Noah LSM control run

(ctrl.—black line), SNC-PF assimilation run (SMC—blue line), and

ground observations (obs.—red line). The site location is shown in

this figure

Table 2 Evaluation statistics for station at Lucky Hill, USDA ARS (m3 m-3)

5 cm 20 cm 50 cm 100 cm

Mean RMSE Bias Mean RMSE Bias Mean RMSE Bias Mean RMSE Bias

Obs. 0.20 0.08 0.08 0.10

Ctrl. 0.19 0.10 0.11 0.21 0.10 0.14 0.19 0.11 0.11 0.20 0.09 0.08

SMC-PF 0.14 0.06 0.06 0.16 0.70 0.09 0.13 0.05 0.05 0.11 0.02 0.01

10th
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Fig. 6 Example of remote-sensed surface soil moisture on 10th, 20th,

and 30th of July (top), August (middle), and September (bottom) in

2005. Star indicates the site location shown in Fig. 4. Heavy solid
lines indicate the basin boundaries of the Basin. The thin line
indicates the boundary between Mexico and Arizona, the US
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Conclusions

In this study, we have explored the use of remote sensing

soil moisture data and Noah LSM to improve estimation of

soil moisture at deep soil layers, ranging from 5 to 100 cm.

SMC-PF technique was used for the assimilation of remote

sensing data. The experiment was demonstrated at two

NRCS gauge points where long-term observations of soil

moisture and temperature are available. The results show

that using top layer information in the simulation has sig-

nificant improved estimation of soil moisture at lower

layers (e.g., 20 and 50 cm).

Further experiments were carried out to semi-arid region

USDA ARS experiment watershed. Remote sensing soil

moisture measurement from AMSR-E NASA EOS Aqua

satellite was used and evaluated. Comparing to site

observation, remote sensing measurement underestimated

soil moisture at 5-cm depth, while Noah model control run

overestimated soil moisture at all layers, from 5 to

100 cm). Further test of assimilating remote sensing soil

moisture at top layer to the Noah model was evaluated; it is

found that vertical soil moisture profile at the test point is

effectively improved.

Test sites in this study are in semi-arid region with low

vegetation and dry weather. Remote sensing data provide

reasonably well top layer soil moisture estimation, as a

result, the model assimilated retrieval also improved sig-

nificantly from non-assimilated run (control run). For the

region with high vegetation or large canopy, the brightness

temperature received from passive microwave sensors are

complicated from mixture of microwave emissions of

multiple surface properties and water contents. Studies to

improve microwave sensing using L-band active and pas-

sive microwave sensors are planned in the current Euro-

pean Space Agency (ESA) and NASA programs. It is
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expected that, with effective physical model and advanced

assimilation technique to merge effective remote sensing

soil moisture estimation, better soil moisture estimation

from regional to global scale can be obtained.
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