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Since the past three decades a great deal of effort is devoted to development of satellite-based precipita-
tion retrieval algorithms. More recently, several satellite-based precipitation products have emerged that
provide uninterrupted precipitation time series with quasi-global coverage. These satellite-based precip-
itation products provide an unprecedented opportunity for hydrometeorological applications and climate
studies. Although growing, the application of satellite data for hydrological applications is still very lim-
ited. In this study, the effectiveness of using satellite-based precipitation products for streamflow simu-
lation at catchment scale is evaluated. Five satellite-based precipitation products (TMPA-RT, TMPA-V6,
CMORPH, PERSIANN, and PERSIANN-adj) are used as forcing data for streamflow simulations at 6-h
and monthly time scales during the period of 2003–2008. SACramento Soil Moisture Accounting (SAC-
SMA) model is used for streamflow simulation over the mid-size Illinois River basin.

The results show that by employing the satellite-based precipitation forcing the general streamflow
pattern is well captured at both 6-h and monthly time scales. However, satellites products, with no
bias-adjustment being employed, significantly overestimate both precipitation inputs and simulated
streamflows over warm months (spring and summer months). For cold season, on the other hand, the
unadjusted precipitation products result in under-estimation of streamflow forecast. It was found that
bias-adjustment of precipitation is critical and can yield to substantial improvement in capturing both
streamflow pattern and magnitude. The results suggest that along with efforts to improve satellite-based
precipitation estimation techniques, it is important to develop more effective near real-time precipitation
bias adjustment techniques for hydrologic applications.

� 2010 Elsevier B.V. All rights reserved.
1. Introduction

Precipitation is the key input for hydrometeorological modeling
and applications. For accurate flood predictions, reliable quantifi-
cation of precipitation data is crucial. However, in many populated
regions of the world including developing countries, ground-based
measurement networks (whether from radar or rain gauge) are
either sparse in both time and space or nonexistent. This situation
restricts these regions to manage water resources and hampers
early flood warning systems resulting in massive socioeconomic
damages.

With suites of sensors flying on a variety of satellites over the
last three decades, many satellite-based precipitation estimation
algorithms have been developed to make the precipitation data
available to the community in quasi-global scale. Several high
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resolution precipitation products are now operational in high res-
olution at quasi-global scale. Among those are the TRMM Multi-
satellite Precipitation Analysis (TMPA; Huffman et al., 2007), the
Precipitation Estimation from Remotely Sensed Information Using
Artificial Neural Networks (PERSIANN; Hsu et al., 1997; Sorooshian
et al., 2000), Climate Prediction Center (CPC) morphing algorithm
(CMORPH; Joyce et al., 2004), and the Naval Research Laboratory
Global Blended-Statistical Precipitation Analysis (NRLgeo; Turk
et al., 2000). Although different in the precipitation estimation pro-
cedure, in all of the listed products a combination of information
from infrared and microwave sensors on geostationary and low
earth orbiting satellites are used in attempt to improve the consis-
tency, accuracy, coverage, and timeliness of high resolution precip-
itation data.

Given different estimation techniques and the existing uncer-
tainties in retrieving precipitation characteristics from satellite
information (Krajewski et al., 2000; Adler et al., 2001; Ebert
et al., 2007; Gottschalck et al., 2005; AghaKouchak et al., 2009;
McCollum et al., 2002; Tian et al., 2007), studies on reliability of
hydrologic predictions based on the satellite-derived precipitation
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data need to be continued. One useful feedback of such studies is to
assess the applicability of satellite-based streamflow prediction for
data sparse regions. These types of studies are also motivated by
global decline of in situ networks for hydrologic measurements
(Stokstad, 1999; Shiklomanov et al., 2002) as opposed to the grow-
ing trend in the availability of satellite sensors providing more fre-
quent and more accurate precipitation-relevant information and
also near future mission such as the Global Precipitation Measure-
ment (GPM) missions among others. In concert with such develop-
ments, great deals of research are being conducted to improve
quality and resolution of precipitation products from individual
or combination of sensors (e.g., Behrangi et al., 2010b among
others).

Several previous studies estimated streamflow by using hydro-
logic models with inputs obtained from remotely sensed data
(Hong et al., 2006; Hossain and Anagnostou, 2004; Yilmaz et al.,
2005). Schultz (1996) proposed a model to reconstruct monthly
runoff estimates based on the geostationary satellite data, and ap-
plied a hydrologic model to obtain flood hydrographs. Tsintikidis
et al. (1999) evaluated the feasibility of satellite-derived mean
areal precipitation estimates for hydrologic application across
northern Africa. Using Meteosat inferred precipitation data Grimes
and Diop (2003) predicted streamflow estimates and concluded
that inclusion of numerical weather model outputs might improve
the estimated flood hydrographs. Nijssen and Lettenmaier (2004)
investigated the effect of satellite-based precipitation sampling er-
ror on estimated hydrological fluxes. Using TMPA data, Su et al.,
2008 investigated the feasibility of satellite-based precipitation
data for hydrologic predictions. They concluded that satellite esti-
mates have potential for hydrologic forecasting particularly with
respect to simulation of seasonal and inter-annual stream-flow
variability.

This study aims to assess the use of available near real-time
operational precipitation estimation products in streamflow fore-
casting. The objective of present study is threefold. First, how does
precipitation estimation from satellite data using different algo-
rithms and ground multi-sensor product compare at a mid-range
Fig. 1. The study basin with overla
size basin. Second, assuming that the hydrologic model generates
reliable streamflow estimations, how differences in input precipi-
tation characteristics among different products are reflected in
resulting streamflow hydrographs at the time scale (usually 6 h)
used by the NWS. The results provide insights on needed accuracy
for precipitation input. Finally, evaluation of precipitation inputs
with respect to ground-based streamflow observations at wa-
tershed outlet can provide a secondary check, particularly for
hydrologic applications.

The paper consists of 5 sections. In Section 2, case study speci-
fications including period and area of study, description of hydro-
logic model, and datasets are provided. Method and model
calibration are described in Section 3. Section 4 outlines the results
and discussion of findings. Finally, concluding remarks are pre-
sented in Section 5.

2. Case study specifications

2.1. Period and area of study

The experiment is performed using 6 years of data (2003–2008)
over the Illinois River basin located upstream of USGS gauging sta-
tion (07195430) south of Siloam Springs, Arkansas (Fig. 1). The wa-
tershed (hereafter referred to as the Siloam basin) has been utilized
as a test basin for the Distributed Modeling Inter-comparison Pro-
ject (DMIP). The size of the Siloam basin is typical of the size used
as an operational forecasting unit by NWS (Smith et al., 2004) and
occupies 1489 km2. Elevation ranges from 285 m at the outlet to
590 m at the highest and the basin’s land cover can be described
as uniform with approximately 90% of the basin area being covered
by deciduous broadleaf forest with the remainder being mostly
woody. The dominant soil types in the basin are silty clay (SIC),
silty clay loam (SICL), and silty loam (SIL).The average annual rain-
fall and runoff of the basin are about 1200 and 300 mm/year,
respectively (Smith et al., 2004). Siloam basin is free of major com-
plications such as orographic influences, significant snow accumu-
lation, and stream regulations (Smith et al., 2004).
in elevation map and streams.
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2.2. Description of the hydrologic model

The SACramento Soil Moisture Accounting (SAC-SMA) (Burnash
et al., 1973; Burnash, 1995) is used to model the rainfall–runoff
process. SAC-SMA is a lumped, conceptual model and is being used
as the core component of the National Weather Service (NWS)
River Forecasting System (NWSRFS) for rainfall-runoff modeling
at the basin scale. Mean Areal Precipitation (MAP) and potential
evapotranspiration are forcing data for the model to generate run-
off response components. The model consists of an upper-zone
representing the uppermost soil layer and a lower-zone represent-
ing the deeper portion of the soil profile. Each zone includes ten-
sion and free water storages. Depending on the status of the
upper-zone free water and the deficiencies in the lower-zone sto-
rages, the percolation rate from the upper to the lower layer is con-
trolled through a non-linear process. The model has sixteen
parameters and six soil moisture states and generates five runoff
response components as following: (1) direct runoff resulted from
falling precipitation on permanent and temporary impervious
areas, (2) surface runoff generated when the precipitation rate is
greater than percolation rate, (3) interflow, which is the lateral out-
flow from the upper-zone free water storage, (4) supplementary
base flow, which is the lateral drainage from lower-zone supple-
mentary free water storage, and (5) primary base flow, which is
the lateral drainage from the lower-zone primary free water stor-
age. The summation of runoff components is then convolved with
the unit-hydrograph of the basin’s outlet to generate the
streamflow at this location.

2.3. Datasets

The dataset used in this study consists of precipitation forcing
from five satellite-based products along with the reference ground
multi-sensor precipitation data, potential evaporation, and stream-
flow observations at basin’s outlet. The satellite-derived precipita-
tion products utilized in the present study are: (1) TMPA real-time
(hereafter referred to as TMPA-RT), collecting available micro-
wave-derived precipitation estimates from various satellites with-
in a time bracket of 3 h for each cell on a 0.25 � 0.25-degree grid
and then fills the gaps with microwave-calibrated infrared esti-
mates, (2) PERSIANN, using artificial neural networks to establish
relationships between infrared data and rain rate after real-time
adjustment of network weights based on available microwave-
derived rain rates, (3) CMORPH, estimating a temporally and spa-
tially complete precipitation field, exclusively from microwave
observations through guided propagation of precipitation esti-
mates between two microwave images using infrared-based cloud
tracking, (4) TMPA bias adjusted (hereafter referred to as TMPA-
V6), and (5) PERSIANN bias adjusted (hereafter referred to as PER-
SIANN-adj).

As discussed by Huffman et al. (2007), from 1 January 1998 to
the end of March 2005, the TMPA-V6 utilizes the Global Precipita-
tion Climatology Center (GPCC) 1.0� � 1.0� monthly monitoring
product and since then uses Climate Assessment and Monitoring
System (CAMS) 0.5� � 0.5� monthly gauge analysis to bias adjust
the 3-h reprocessed and initially processed TMPA estimates
respectively. Note that besides precipitation bias, TMPA-V6 differs
from TMPA-RT as in TMPA-V6; TRMM Combined Instrument (TCI)
precipitation estimate is used to calibrate rain estimates from
other microwave sensors while the TRMM Microwave Imager
(TMI) precipitation estimate is the calibrator in real-time product
(G. Huffman and D. Bolvin, 2010, personal communications). PER-
SIANN-adj is obtained by computing a correction factor (a) as the
ratio of GPCP rainfall and PERSIANN rainfall at 2.5� grids at
monthly scale. The monthly bias is then spatially downscaled
and removed from PERSIANN 0.25� resolution estimates using
the correction factor a. GPCP monthly rainfall inherently considers
gauge measurement and several satellite-based rainfall and model
estimates (Adler et al., 2003). PERSIANN-adj maintains total
monthly precipitation estimate of GPCP, while retains the spatial
and temporal details made available through PERSIANN estimate
(0.25-degree and hourly). The hourly 0.25-degree lat/long PERSI-
ANN-adj data together with the listed satellite and multi-sensor
precipitation products are integrated from their original resolution
onto a common 6-h and monthly 0.25 � 0.25� resolution to be used
in the study time scales.

The reference precipitation estimates are obtained from the
standard NWS Multi-Sensor Precipitation Estimates (MPE – NEX-
RAD and gauge) data. The dataset was made available to DMIP 2
participants in the Hydrologic Rainfall Analysis Project (HRAP) grid
format at 1-h temporal and 4 km � 4 km spatial resolution. Siloam
basin is well inside two radar umbrella and several studies in the
past have analyzed the quality of the NEXRAD precipitation esti-
mates in this basin and surrounding areas (Smith et al., 2004). Note
that for the period of the study, Siloam basin lacks continuously-
available dense network of rain gauges and as such the combined
NEXRAD-gauge data was solely used as precipitation reference as
it may provide the best possible approximation of the true areal
average rainfall values.

Hourly streamflow observation data at the basin’s outlet were
obtained from the USGS local office. Some quality control of the
provisional hourly data obtained from the USGS was performed
at the NWS Office of Hydrologic Development (OHD). Quality con-
trol was a manual and subjective process accomplished through vi-
sual inspection of observed hydrographs. The suspicious portions
of the hydrograph were simply set to missing (Smith et al.,
2004). The reference hourly USGS streamflow observation and
hourly average multi-sensor precipitation rates are converted to
6-h and monthly time scales to be used for calibration and evalu-
ation of the results.

Climatic monthly mean values (in mm/day) of potential evapo-
ration (PE) demand were also obtained through DMIP 2. As stated
by Smith et al. (2004), these values are derived using information
from seasonal and annual free water surface (FWS) evaporation
maps in NOAA Technical Report 33 (Farnsworth et al., 1982) and
mean monthly station data from NOAA Technical Report 34
(Farnsworth and Thompson, 1982).
3. Methodology

3.1. Calibration of the hydrologic model

In order to generate a more reliable streamflow forecast, the
parameters of the SAC-SMA model need to be calibrated. In this
study, the calibration procedure is performed separately for each
individual satellite product and multi-sensor data using the wetter
half (2006–2008) of the available dataset (2003–2008), with 2006
dataset repeated for the spin-up period. The selection of wetter
half period for calibration is based on our expectation that this per-
iod may result in excitement of greater number of the SAC-SMA
parameters. The remaining dataset (2003–2005) was used for ver-
ification of the results. Excess rainfall calculated from SAC-SMA
model is convolved with 6-h unit hydrograph to generate 6-h
streamflow comparable to the 6-hourly accumulated streamflow
observation at the basin’s outlet. Note that the 6-h unit hydrograph
is constructed from the 1-h unit hydrograph provided by DMIP 2
using S-curve method (McCuen, 2004).

In lumped implementation, SAC-SMA has 13 major parameters
that cannot be measured directly and need to be identified through
a proper calibration (parameter optimization) scheme. The Shuf-
fled Complex Evolution-Univ. of Arizona (SCE-UA; Duan et al.,
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1992) algorithm in conjunction with the Multi-step Automatic
Calibration Scheme (MACS; Hogue et al., 2000) is used to calibrate
the model parameters. The SCE-UA is a robust and efficient optimi-
zation algorithm for calibration of complex conceptual hydrologic
models (Duan et al., 1992; Cooper et al., 1997; Kuczera, 1997;
Thyer et al., 1999). SCE-UA utilizes the simplex method of Nelder
and Mead (1965), a random search procedure, and complex shuf-
fling (Duan et al., 1992) in order to obtain the global optima. The
MACS procedure suggests a sequential implementation of various
objective functions alleviating some of the shortcomings associ-
ated with using a single objective function (Hogue et al., 2000;
Gupta et al., 1998). In brief, MACS consists of the following sequen-
tial steps: (1) Calibrate all parameters of the SAC-SMA model using
LOG objective function (Eq. (1)) to put more emphasis on estima-
tion of the lower-zone parameters, (2) Optimize the SAC-SMA
upper-zone and percolation parameters using root-mean squared
error (RMSE) objective function (Eq. (2)) to improve the simulation
of the peak flows, and (3) Maintain the upper-zone parameters and
emphasize on optimization of lower-zone parameters using the
LOG objective function. The LOG and RMSE objective functions
are defined as below:

LOG ¼
X

log Q sim;t � log Qobs;t

� �2
� �0:5

=n ð1Þ

RMSE ¼
X

Q sim;t � Q obs;t

� �2
� �0:5

=n ð2Þ

where Qsim,t and Qobs,t are simulated and observed streamflows at
time step t, and n is the total number of the streamflow pairs allo-
cated to model calibration.
Fig. 2. Six-hour basin averaged precipitation time-series: (a) multi-sensor (reference
3.2. Evaluation statistics

In order to analyze the performance of the satellite-based pre-
cipitation products for streamflow forecasting, it is important to
also evaluate the skill of individual satellite precipitation products
with respect to the reference precipitation data. Therefore, the
evaluations are performed for both precipitation inputs and corre-
sponding streamflow simulations and the outcomes are cross-
compared. In the present study, the precipitation/streamflow
evaluations are conducted at both 6-h and monthly time scales
through visual inspection of rainfall–runoff quantities along with
statistical measures. The two different time scales facilitate to as-
sess the non-linear rainfall–runoff process as well as to investigate
the dependence of statistical measures on seasonality, and long
term characteristics of precipitation and streamflow regimes.
Statistical measures used in this study are defined in Appendix A
and include correlation coefficient (COR), root-mean square error
(RMSE) and percent bias (BIAS).

For more detail evaluation of the precipitation products and
generated streamflows, four additional statistical measures are cal-
culated from the contingency table (see categorical statistics in
Appendix A): probability of detection (POD), false alarm ratio
(FAR), areal bias (BIASa) and equitable threat score (ETS). The con-
struction of the contingency table is based on identifying binary (0/
1 or Yes/No) values of precipitation/streamflow occurrence. This is
accomplished by selecting a threshold above which a rain event
(for example) would be considered to have occurred. By using a
range of thresholds, the statistical measures derived from contin-
gency table yield information on the product’s ability to capture
precipitation/streamflow occurrences at different rates. POD and
), (b) TMPA-RT, (c) PERSIANN, (d) CMORPH, (e) TMPA-V6 and (f) PERSIANN-adj.
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FAR range from 0 to 1, with perfection represented by a POD of 1
and a FAR of 0. POD is sensitive to number of pixels correctly clas-
sified as precipitation (Hits). FAR, on the other hand, is sensitive to
number of pixels incorrectly classified as no-precipitation (False
alarm). As a result, a low POD can be increased by increasing the
predicted rain coverage, but such improvement would be at the
cost of increasing false alarms. A value of 1 for BIASa indicates that
predictions and observations have identical area coverage inde-
pendent of location. The ETS ranges between �1/3 and 1 with per-
fection represented by ETS of 1. It allows the scores to be compared
‘‘equitably’’ across different regimes (Schaefer, 1990) and is insen-
sitive to systematic over- or under-estimation.

4. Results

4.1. Evaluation of precipitation forcing

Fig. 2 shows the 6-h basin averaged precipitation time-series
(2003–2008) for reference multi-sensor precipitation (Fig. 2a)
and other precipitation products (Fig. 2b–f). Visual inspection of
precipitation rates and pattern in conjunction with quantitative
statistics, reported at the top-right corner of each panel, demon-
strates high agreement between satellite products and the
reference multi-sensor data. The satellite products with no bias-
adjustment (Fig. 2b–d) agree well among themselves as quantified
by COR, RMSE and BIAS ranging between (0.66–0.79), (0.51–
0.61 mm/h), and (27.6–40.1%), respectively. The two monthly
bias-adjusted satellite products (Fig. 2e and f) is very alike with
substantial improvement compared to their near real-time coun-
terparts. Fig. 2 also suggests that the satellite products with no
bias-adjustment show a strong tendency to overestimate intense
precipitation events. As expected, after bias adjustment, the over
Fig. 3. Binary analysis of precipitation occurrence using ETS, POD, FAR, and BIASa scor
30 mm/h, the total number of rain samples based on multi-sensor data are 846, 635, 391
8768.
and under-estimations are significantly reduced with overall sta-
tistics demonstrating negligible BIAS for TMPA-V6 (1.7%) and PER-
SIANN-adj (6.2%).

While Fig. 2 provides information about precipitation intensity
and its distribution throughout the period of study, it does not
clearly demonstrate the ability of the products to capture the
occurrence of precipitation events. Presumably capturing the
occurrence of precipitation is important because even small
amount of precipitation can affect the initial soil moisture condi-
tions, which subsequently impacts the model’s streamflow gener-
ation. Fig. 3 shows precipitation occurrence at a range of
precipitation intensity thresholds. For example, if a threshold of
1 mm/6 h is selected to detect precipitation events, ETS, POD,
FAR, and BIASa scores can easily be calculated based on the contin-
gency table (see Appendix A) constructed for 1 mm/6 h threshold.
Similarly, by selecting other precipitation thresholds (e.g., 2, 5, 10,
15, 20, and 30 mm/6 h) skill of satellite products to capture low,
medium and intense precipitation events can be analyzed.

As shown in Fig. 3, the overall precipitation detection skill of the
precipitation products (e.g., based on ETS) diminishes as precipita-
tion threshold increases, meaning that the satellite products are
less skillful to capture the correct magnitude of intense precipita-
tion events. For the satellite products with no bias-adjustment
(Fig. 3d), as the precipitation threshold increases, BIASa signifi-
cantly increases. This suggests that during intense precipitation
events, the number of grid-boxes incorrectly classified as rain
(False alarm) tends to be substantially larger than the number of
grid-boxes incorrectly classified as no-rain (Misses). The bias-ad-
justed products show skillful by maintaining a BIASa value around
1, indicating that the total area of precipitation events is well cap-
tured, particularly at thresholds less than 10 mm/h. It is worth
reminding that a perfect BIASa score does not necessarily indicate
es at a range of precipitation intensities. For the thresholds 1, 2, 5, 10, 15, 20, and
, 188, 123, 67, and 24 respectively. The total number of rain and no-rain samples is
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a perfect match between precipitation/no-precipitation grid-boxes
of observed and predicted fields. CMORPH demonstrates high skills
in detecting precipitation events across the entire range of precip-
itation intensities (see Fig. 3b). However, similar to TMPA-RT, it
significantly overestimates the intense precipitation areas
(Fig. 3d). From Fig. 3 and based on ETS, CMORPH outperforms all
satellite products, including those that are bias-adjusted, in delin-
eation of precipitation areas within an intensity range of less than
15 mm/6 h. As discussed by Behrangi et al. (2009) and Behrangi
et al. (2010a), one reason for this could be due to inability of infra-
red based precipitation estimation algorithms (e.g., PERSIANN and
partially TMPA) to: (a) capture warm rainfall and (b) screen out no-
rain thin cirrus clouds that are usually very cold. The first short-
coming may result in significant under-estimation of the total vol-
ume of rainfall, while the latter may result in assigning
precipitation to areas with no-precipitation.

Fig. 4 shows the time series of monthly precipitation rates for
all of the precipitation products. Besides the visual inspection,
the statistical measures at top-right corners of the Fig. 4a–e sug-
gest that all satellite products can capture the general precipitation
pattern at monthly scale. The monthly averaged precipitation rate
mostly peaks during spring and early summer and reaches its min-
imum value during late fall and early winter. During spring and
summer months unadjusted satellite products TMPA-RT, CMORPH
& PERSIANN tend to significantly overestimate the amount of pre-
cipitation (Fig. 4a–c). While slight under-estimation of precipita-
tion amount is observed during the cold seasons, as expected,
bias-adjusted products (Fig. 4d and e) demonstrate substantial
improvement in capturing the monthly variation and total amount
of precipitation throughout the study period. The statistical mea-
sures reported in Fig. 4 indicate that for the satellite products with
no bias-adjustment (Fig. 4a–c), COR and RMSE range between 0.74
to 0.81 and 0.08 to 0.09 mm/h, respectively. BIAS values are similar
to Fig. 2 (6-h data). The two bias-adjusted products appear almost
Fig. 4. Time series of monthly-averaged 6-h precipitation rates over the basin: (a) TMPA
line in panels a–e represents the reference (multi-sensor) monthly-averaged 6-h precip
identical and to a large extent resemble the multi-sensor precipita-
tion estimates at monthly scale (COR = 0.92 and RMSE = 0.03 mm/h
and negligible BIAS). One reason for this is that the bias-adjusted
products are not independent of the MPE data since both are gauge
adjusted. However, the adjustment of MPE and satellite-based
products are performed over different spatial scales and temporal
periods. For additional information, readers are referred to Huff-
man et al. (2001) and Young et al. (2000).

Fig. 5 supplements Fig. 3 by demonstrating the monthly perfor-
mance of the precipitation products in capturing precipitation
events as identified with precipitation threshold of 1 mm/6 h. For
each month, the statistical measures are calculated from the pool
of all 6-h pairs of satellite-multisensor rain intensities. Fig. 5
clearly displays that the satellite products tend to overestimate
precipitation area during warm months while demonstrating con-
siderable under-estimation during cold months (e.g., see TMPA-RT
in Fig. 5d). Despite TMPA-RT and CMORPH, PERSIANN does not
show under-estimation of precipitation for the first two months
of the year (Fig. 5d) which could be due to its difficulty in removing
grid-boxes that incorrectly classified as rain, as suggested by FAR
(Fig. 5c).

4.2. Evaluation of streamflow forecast

Six-hour streamflow hydrographs generated from the individ-
ual 6-h satellite and multi-sensor precipitation inputs are com-
pared to streamflow observations in Fig. 6. For better
visualization of streamflow peaks along with low flows (e.g., reces-
sion parts), the hydrographs are transformed using the following
transformation proposed by Hogue et al. (2000). The transforma-
tion has also been used by Yilmaz et al. (2005) and Khakbaz
et al. (2009):

Qtrans ¼
ðQ þ 1Þ0:3 � 1

0:3
ð3Þ
-RT, (b) PERSIANN, (c) CMORPH, (d) TMPA-V6 and (e) PERSIANN-adj. The thick grey
itation rates.



Fig. 5. Monthly performance of the precipitation products in capturing precipitation events as identified with precipitation threshold of 1 mm/6 h. The total number of
samples used for analysis range between 680 and 740.
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Visual inspection of the hydrographs reveals that satellite pre-
cipitation products result in reasonable capture of streamflow dis-
charge including extreme cases and their timings. However, if not
bias-adjusted (Fig. 6b–d), satellite products demonstrate signifi-
cant overestimation of peakflows extending to the recession peri-
ods. Fig. 6 indicates that while severe streamflows may occur in
any season, satellite products tend to result in overestimation of
the flood magnitudes mostly in spring and summer time. To some
extent, this is consistent with the input precipitation analysis in
Section 4a.

Table 1 compares the statistics for input precipitation and re-
sulted streamflow during calibration and validation periods. Per-
formance measures in Table 1 along with streamflow
hydrographs, displayed in Fig. 6, suggest that the overestimation
of streamflow is more significant for CMORPH and TMPA-RT during
both calibration and validation periods with streamflow BIAS val-
ues exceeding 50%. In both calibration and validation periods the
PERSIANN-based streamflow presents better BIAS and RMSE scores
than CMORPH and TMPA-RT, but worse COR as compared to
CMORPH. The streamflows generated from bias-adjusted products
(multi-sensor, TMPA-V6 and PERSIANN-adj) fairly well capture the
streamflow magnitude and timing during both calibration and val-
idation periods. This highlights that bias-adjustment is a crucial
step to improve the overall skill of the satellite products for
streamflow predictions. Note that the statistical measures reported
in Table 1 indicate that the prediction skill is generally higher dur-
ing validation period than during the calibration period. One rea-
son for this could be due to the existence of a more complicated
streamflow hydrograph with many extreme streamflows during
the calibration period as compared to the validation period.

More detailed analysis of the simulated streamflows can be ob-
tained from Fig. 7 where 6-h streamflows are cross-compared
using categorical statistics calculated from contingency table with-
in a range of streamflow thresholds. The left and right columns
provide the statistical measures for calibration and validation peri-
ods, respectively. Fig. 7a and b shows that the POD decreases as the
threshold increases. This indicates that using the satellite-based
products for streamflow simulation may result in a substantial loss
of skill to detect severe flood events. Fig. 7b and c indicate that
bias-adjusted products produce smaller number of incorrectly
identified streamflows (FAR) as compared to those that are not
bias-adjusted. The improved FAR in bias-adjusted cases is more
remarkable at higher streamflow threshold which is consistent
with the results for the precipitation inputs (Fig. 2c). Fig. 7c and
d demonstrate that satellite products with no bias-adjustment
generally result in significant overestimation of river discharge
during extreme streamflow cases. However, the bias-adjusted
products tend to cause under-estimation of the extreme stream-
flows presenting considerable decline in streamflow BIASa at high-
er thresholds (Fig. 7e and f). Fig. 7 together with Fig. 6 and Table 1
demonstrates that the simulated streamflow using the multi-
sensor precipitation product is superior to those obtained from
other products including bias-adjusted ones Such superiority is
more marked in FAR, COR, and RMSE measures.

Fig. 8 shows the time series of monthly averaged 6-h stream-
flows generated for individual satellite and multi-sensor precipita-
tion products. The monthly averaged 6-h observed streamflow is
also shown in each panel to serve as reference for comparison.
Similar to Fig. 6, the hydrographs are transformed using Eq. (1)
for more clear demonstration of peaks and low flows together in
a single plot. Fig. 8 shows that during spring and summer months,
the monthly streamflows are mostly overestimated by satellite
products. This is consistent with the previously reported monthly
precipitation input and reported 6-h streamflow analysis. Table 2



Fig. 6. Six-hour streamflow hydrographs generated from (a) multi-sensor (reference), (b) TMPA-RT, (c) PERSIANN, (d) CMORPH, (e) TMPA-V6, (f) PERSIANN-adj. The thick
grey line in panels a–f represents the gauge-observed streamflow.

Table 1
Statistical measures for 6-h precipitation inputs and corresponding streamflows simulated using SAC-SMA. The results are reported separately for calibration and validation
periods.

Precipitation products Calibration period

Precipitation input Simulated streamflow

COR RMSE (mm/h) BIAS (%) COR RMSE (mm/h) BIAS (%)

Multi-sensor – – – 0.77 26.92 �14.38
TMPA-RT 0.68 0.68 37.45 0.45 102.88 51.25
PERSIANN 0.65 0.57 33.09 0.40 42.40 30.19
CMORPH 0.79 0.54 34.55 0.52 97.03 49.03
TMPA-V6 0.73 0.45 �0.03 0.66 30.10 �17.48
PERSIANN-adj 0.72 0.44 7.70 0.66 29.85 �9.63

Validation period

Precipitation input Simulated streamflow

COR RMSE (mm/h) BIAS (%) COR RMSE (mm/h) BIAS (%)

Multi-sensor – – – 0.84 22.03 �9.89
TMPA-RT 0.69 0.58 30.55 0.62 54.21 14.51
PERSIANN 0.68 0.44 20.85 0.64 26.88 �12.16
CMORPH 0.79 0.47 46.42 0.73 64.24 55.64
TMPA-V6 0.75 0.35 3.75 0.71 25.97 �6.77
PERSIANN-adj 0.75 0.33 4.19 0.73 26.40 �11.85
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provides monthly scale statistical measures for individual precipi-
tation input and corresponding streamflow predictions, separately
for calibration and validation periods. The monthly COR for input
precipitation and predicted streamflow range between 0.76–0.91
and 0.70–0.96 during calibration period and between 0.70–0.95
and 0.62–0.92 during validation period, respectively. Simulated
streamflows from multi-sensor precipitation inputs provide the
highest COR (exceeding 0.92) at basin’s outlet followed by



Fig. 7. Binary analysis of 6-h streamflows using ETS, POD, FAR, and BIASa at a range of streamflow thresholds. The left-side and right-side panels display the analysis during
calibration and validation periods, respectively. At the calibration period and for the thresholds 2, 3, 5, 7, 9, and 11 cm (log scale), the total number of samples (based on
streamflow measurement) that exceed the threshold values are 3599, 2395, 723, 245, 109, and 52, respectively. Similarly, for the validation period the number of samples
(based on streamflow measurement) that exceed the threshold values are 3525, 2166, 418, 140, 69, and 34, respectively. The total numbers of streamflow measurements for
the calibration and validation period are 4334 and 4362, respectively.
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TMPA-V6 and PERSIANN-adj. Among satellite products with no
bias-adjustment, CMORPH provides the highest COR (exceeding
0.73). Table 2 indicates that by introducing the bias-adjusted pre-
cipitation products to the SAC-SMA model the RMSE of simulated
streamflow is reduced significantly. TMPA-RT and CMORPH dem-
onstrate an overall highest RMSE in simulated streamflow during
both calibration and validation periods.

Fig. 9 displays monthly COR, RMSE, and BIAS for input precipi-
tation and output streamflow predictions across all 12 months.
Both calibration and validation datasets are included in Fig. 9.
The figure suggests the followings: (1) the order of merit for pre-
cipitation products is not necessarily preserved in corresponding
output streamflow predictions. (2) During spring and summer
months significant overestimation of both precipitation inputs
and resulted streamflows are observed for the satellite products
with no bias-adjustment (Fig. 9e and f). For colder months the
unadjusted satellite products demonstrate slight under-estima-
tion. (3) The satellite bias-adjusted products perform alike across
different months with slight under-estimation of observed stream-
flow, particularly during cold months. (4) While satellite products
demonstrate fairly consistent COR across different months of year,
the resulted streamflows show a significant decline in COR during
warm months. This shows that the observed streamflow pattern
during warm months is not well captured by the simulated
streamflow using satellite precipitation input. One reason for the
observed inconsistency in COR results might be due to significant
overestimation of precipitation in conjunction with non-linearity
of the rainfall–runoff process. (5) RMSE is higher during warm
months and is declined during cold months. (6) Overall, the
streamflow generated from multi-sensor precipitation product
outperforms all other streamflow predictions fairly consistently
across all months. It is worth noting that quantifying a true rela-
tionship between rainfall and runoff skills is not straightforward.
The main issue is precipitation statistics are calculated with re-
spect to the multi-sensor product while the statistics for predicted
streamflows are based on streamflow observation and these two
references are inherently different.
5. Summary and conclusions

Satellite-based precipitation data are viable sources of precipi-
tation, particularly for regions with poor or nonexistent ground-
reference measurements. Despite global coverage and uninter-
rupted availability, satellite data are not commonly integrated into
operational hydrologic modeling mainly due to lack of information
on the reliability of such products at basin scale. Over a mid-sized
basin, 6 years of 5 satellite-based precipitation products namely
TMPA-RT, TMPA-V6, CMORPH, PERSIANN and PERSIANN-adj are
first evaluated with respect to multi-sensor (NEXRAD and gauge)
dataset. The precipitation products are then introduced to the
lumped SAC-SMA rainfall–runoff model to generate streamflows
at 6-h and monthly time scales and the results are compared to
streamflows measured by gauge. Statistical analysis indicates that
the bias-adjusted satellite precipitation products agree well with
gauge-adjusted radar, compared to their counterparts with no



Fig. 8. Time series of monthly-averaged 6-h simulated streamflows over the basin: (a) multi-sensor (reference), (b) TMPA-RT, (c) PERSIANN, (d) CMORPH, (e) TMPA-V6, (f)
PERSIANN-adj. The thick grey line in panels a–e represents the reference (gauge observation) monthly-averaged 6-h streamflows.

Table 2
Statistical measures for monthly averaged 6-h precipitation inputs and corresponding monthly averaged 6-h streamflows simulated using SAC-SMA. The results are reported
separately for calibration and validation periods.

Precipitation products Calibration period

Precipitation input Simulated streamflow

COR RMSE (mm/h) BIAS (%) COR RMSE (mm/h) BIAS (%)

Multi-sensor – – – 0.96 7.09 �14.38
TMPA-RT 0.79 0.10 37.45 0.70 26.21 51.25
PERSIANN 0.76 0.09 33.09 0.72 14.31 30.19
CMORPH 0.81 0.09 34.55 0.73 26.70 49.03
TMPA-V6 0.88 0.04 �0.03 0.95 6.86 �17.48
PERSIANN-adj 0.91 0.03 7.70 0.96 5.19 �9.63

Validation period

Precipitation input Simulated streamflow

COR RMSE (mm/h) BIAS (%) COR RMSE (mm/h) BIAS (%)

Multi-sensor – – – 0.92 6.57 �9.89
TMPA-RT 0.77 0.09 30.55 0.72 12.57 14.51
PERSIANN 0.70 0.08 20.85 0.62 10.71 �12.16
CMORPH 0.80 0.09 46.42 0.74 18.35 55.64
TMPA-V6 0.95 0.02 3.75 0.86 6.92 �6.77
PERSIANN-adj 0.93 0.03 4.19 0.88 7.63 �11.85
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bias-adjustment, particularly to capture timing, occurrence and
magnitude of precipitation events. The satellite precipitation prod-
ucts with no bias-adjustment (TMPA-RT, CMORPH & PERSIANN)
tend to overestimate intense precipitation events quite signifi-
cantly, particularly during warm months. Reported POD and FAR
values indicate that during intense precipitation events more grids
are incorrectly classified as rain comparing to those grids that are
incorrectly classified as no-rain. In both 6-h and monthly time
scale CMORPH demonstrates generally higher skill to delineate
precipitation area and the estimated precipitation rate correlates



Fig. 9. Monthly COR, RMSE, and BIAS for input precipitation (left side) and output streamflow predictions (right side) across all 12 months.
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better with multi-sensor precipitation. On the other hand PERSI-
ANN generally better estimates the total precipitation (BIAS) with
less RMSE at both time scales.

Binary analyses of 6-h simulated streamflows show that as
streamflow magnitude increases, satellite-based simulations com-
monly demonstrate less skill to detect the extreme streamflows.
This is indicated by generally decreasing POD, increasing FAR,
and increasing areal bias (BIASa for unadjusted precipitation input)
at higher streamflows. While bias-adjusted precipitation input re-
sult in improved capabilities to capture the extreme streamflows, it
may result in considerable under-estimation (Fig. 7e and f). Analy-
sis of streamflow magnitude suggests that during warm months
(spring and summer) streamflows are overestimated (high BIAS
and high RMSE) when satellite products with no bias-adjustment
are introduced to the hydrologic model. Unadjusted precipitation
inputs also tend to yield overestimation of peakflows. The
observed overestimation of streamflow is consistent with the
observed overestimation of precipitation and is found less severe
for cases where bias-adjusted precipitation is introduced to the
model. On the other hand, bias-adjusted precipitation inputs yield
more skill to capture the true magnitude of streamflow with
generally improved COR, RMSE and BIAS scores.

Overall and by recognizing that remotely sensed satellite pre-
cipitation data are subject to significant errors, the present study
indicates that there exists the potential of using satellite data in
streamflow forecasting. The basin-scale analyses presented here
show that the bias-adjusted products (TMPA-V6 & PERSIANN-
adj) are more promising than their unadjusted counterparts as
they yield streamflows more comparable to ground-reference
observations. While it is concluded that bias-adjustment is a very
important step in improving the applicability of satellite precipita-
tion data for streamflow simulations, even the bias-adjusted
precipitation products are still imperfect and may result in poor
detection and estimation of precipitation extent and intensity, par-
ticularly during extreme events. Also the existing bias-adjusted
products cannot be employed in near real-time applications
because of their bias-adjustment scheme (usually monthly bias
adjustment). Therefore, along with efforts to develop better precip-
itation estimation techniques, robust near real-time bias-adjust-
ment methods need to be investigated.
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Fig. A. Visual representation of the contingency table.
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Appendix A:. Definition of the statistical measures used in this
study

(a) Quantitative statistics, which are obtained using estimated
and observed quantities. For example, if PRest and PRobs rep-
resent estimated and observed precipitation rates, the quan-
titative statistics used in the present work are defined as
below:
Correlation coefficient ðCORÞ

¼
PN

i¼1 PRobsð ÞiðPRestÞi
� �

� NðPRobsÞPRestÞ
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1ðPRobsÞ2i � NðPRobsÞ2

h i PN
i¼1ðPRestÞ2i � NðPRestÞ2

h ir

Root mean square ðRMSEÞ

¼ 1
N

XN

i¼1
ðPRestðiÞ � PRobsðiÞÞ2

	 
0:5

Percent bias ðBIASÞ ¼
PN

i¼1 RRestðiÞ � RRobsðiÞð Þ
N

� 100

where N is the total number of observed and estimated rain
pairs.
(b) Categorical statistics using the contingency table. By con-
structing the contingency table using a specific precipitation
threshold (Fig. A), the categorical statistics used in the pres-
ent work are calculated as below:
Probability of detection ðPODÞ ¼ H=ðH þMÞ
False alarm ratio ðFARÞ ¼ F=ðH þ FÞ
Areal bias ðBIASaÞ ¼ ðH þ FÞ=ðH þMÞ
Equitable treat score ðETSÞ ¼ ðH � hitsrandomÞ=ðHþMþ F

� hitsrandomÞ
hitsrandom ¼ ðHþMÞðH þ FÞ½ �=ðH þM þ F þ ZÞ
where H is the hits, F the false alarm, M the misses, Z is the correct
negative.
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