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[1] When a single model is used for hydrologic prediction, it must be capable of
estimating system behavior accurately at all times. Multiple-model approaches integrate
several model behaviors and, when effective, they can provide better estimates than that of
any single model alone. This paper discusses a sequential model fusion strategy that uses
the Bayes rule. This approach calculates each model’s transient posterior distribution at
each time when a new observation is available and merges all model estimates on the basis

of each model’s posterior probability. This paper demonstrates the feasibility of this
approach through case studies that fuse three hydrologic models, auto regressive with
exogenous inputs, Sacramento soil moisture accounting, and artificial neural network

models, to predict daily watershed streamflow.
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1. Introduction

[2] Engineers often use hydrologic models to describe a
range of issues related to water resources planning and
management, such as watershed runoff generation, reservoir
systems operation, groundwater development and protection,
and water distribution systems [Chow et al., 1988; Frevert
and Singh, 2002]. In the past few decades, the rapid devel-
opment of computer capability and extensive data from
ground observations and remote sensors have permitted the
development of various model types, from “black box” to
physically based models, and from “lumped” to distributed
models, to solve real-world hydrologic problems. However,
users select models primarily on the basis of subjective
preference. A hydrologic model is a simplified presentation
of a real-world processes and it may accurately describe
certain processes but overlook others. Many studies have
shown that predictions based on a single model tend to
underestimate total predictive uncertainty [Barnston et al.,
2003; Krishnamurti et al., 1999]. Others have concluded that
effective combination of multiple models may provide more
skillful predictions than a single model does [Ajami et al.,
2007; Duan et al., 2007; Georgakakos et al., 2004].

[3] In the literature, many methods have been used to
merge multiple data sources in hydrologic modeling. Arith-
metic mean (AM) is a simple and widely used method;
another popular method is weighted averaging (WA), which
calculates each model’s optimal weighting parameters from
the inverse of the error variance of each model’s estimates
[Daley, 1991]. The WA method has been applied to many
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hydrologic and atmospheric science problems, such as
merging precipitation estimates from multiple sources
(gauges, radar, satellite, and numerical weather prediction
models) [Huffiman et al., 1995; Xie and Arkin, 1996]. Other
than AM and WA, some nonlinear and rule-based data
fusion methods, such as fuzzy rule—based modeling and
artificial neural networks (ANN), have been proposed to
integrate several runoff models [Abrahart and See, 2002;
Coulibaly et al., 2005; See and Abrahart, 2001; Shamseldin,
1997; Shamseldin et al., 1997; Xiong et al., 2001].
Shamseldin et al. [1997] applied ANN to combine five
rainfall-runoff models, examining the resulting model on
11 watersheds and demonstrating that the ANN and WA
merging methods outperform AM. Xiong et al. [2001]
proposed a Takagi-Sugeno type of fuzzy rule—based model
to combine several rainfall-runoff model outputs. This
method separates flow into several ranges represented by
linguistic rules that are weighted and combined to generate
output according to their membership function. Their results
show that the fuzzy rule—based model is as effective as the
WA and ANN methods. Similarly, [See and Abrahart, 2001]
tested ANN models as a data fusion tool to combine
streamflow estimates from four models, including ANN,
fuzzy logic, autoregressive moving average (ARMA), and
persistence forecasts, and demonstrated that the ANN fusion
methods outperform the AM methods. Xiong et al. [2001],
Shamseldin [1997], and Coulibaly et al. [2005] also used
WA to combine several streamflow forecasts from a nearest-
neighbor method (NNM), ANN, and a conceptual hydrologic
model, and showed that combined multimodel predictions
are more reliable than estimates from a single model. Re-
cently, the Bayesian model average (BMA) technique has
been proposed for estimating multimodel prediction and
improving prediction uncertainty [4jami et al., 2007; Raftery
et al., 1997; Vrugt and Robinson, 2007]. For each model, the
BMA method assigns an a priori distribution and finds a
combined likelihood. The posterior distribution of each
model’s weighting parameter (level of participation) is cal-
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culated using the expectation maximum (EM) or Markov
chain Monte Carlo (MCMC) methods [Gelman, 2004; Robert
and Casella, 2004]. A review of data fusion methods in the
integration of hydrologic models can be found in work by See
[2008].

[4] The multimodel combination strategies discussed
above rely on finding a set of time-invariant weighting
parameters that are assumed to be normally distributed.
However, various hydrologic modeling approaches have
shown that some models perform better for a certain portion
of the hydrograph (e.g., wet seasons or high-flow periods),
while others perform better for other portions of the hydro-
graph (e.g., dry seasons or low-flow scenarios). Although
assigning fixed weights to models may improve a combined
model’s performance over that of a single model, fixed
parameters do not provide the flexibility to assign higher
weights to models that perform better for a particular simu-
lation period. To resolve time variations that occur when
merging model parameters, Ajami et al. [2007] assigned
model weights on the basis of several flow categories, which
could be determined by calendar month or flow range. In their
approach the combined model selects the weighting param-
eters from the fixed pretrained parameter sets.

[5s] This study used a sequential updating approach to
blend multiple models. The proposed approach, the Bayesian
combined estimator, is a probabilistically based predictor
consisting of adjustable weights, in the form of individual
models’ posterior probabilities that are applied to model
estimates at each prediction time and are updated sequentially.
The multimodel estimate can be selected on the basis of
each model’s posterior probability, which may change over
time and is estimated sequentially, resulting in improved
prediction accuracy [Petridis and Kehagias, 1998; Petridis
et al., 2001].

[6] This paper’s scope is as follows: section 2 describes
Bayes rule and explains how to find a model’s posterior
probability from observations and its a priori distribution.
Section 3 discusses streamflow prediction using multiple
models, presenting the criteria necessary to evaluate model
performance and the basic models that are used to simulate
catchment rainfall-runoff processes. Section 4 provides case
studies for combining several models, including auto re-
gressive with exogenous (ARX) inputs, Sacramento soil
moisture accounting (SAC-SMA), and ANN for predicting
watershed runoff. Conclusions and future directions are
provided in section 5.

2. Bayesian Multiple-Model Approach

[7] Bayesian inference updates the probability that a
hypothesis may be true by referring to evidence or other
supportive information. The posterior distribution of the
quantity of interest is calculated from a set of observations
and their a priori distribution. Consider that k£ models, M =
{M;, ..., M;} are used to predict a quantity of interest, and
data set D = {d;, d>, ..., d;} is used for model calibration.
Our objective is to find the most plausible model, M,, given
the available observations D. The posterior distribution of a
model, M;, is calculated from Bayes’ rule as

DIM;)p (M)

P(MP) -4 p(D) M
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where p(D|M,) is the likelihood function of the model M;, p(M,)
is the a priori probability of the model M, j =1, 2, . . ..k, which
satisfies Y°F p (M) = 1.0, and p(D) = > p(D|M))p(M)) is
the total probability of model j given by a set of data D.
Using the models’ posterior probability, we can calculate
the estimate for the combined model. Let y denote the
quantity of interest after combining & model outputs. The
posterior probability of y given the multimodel combina-
tion is written as

POIML My, M D) = ST p(yiM, D)p(MID).  (2)

The representation above is the marginal or integrated
likelihood estimates of all models, M;, j = 1..., k. For the
given set of models, the combined estimates rely on
specifying the prior distribution of models p(44;) and the
likelihood of each model, p(D[M;). In the absence of
knowledge of model uncertainty, a uniform a priori is
usually considered: that is, p(M;) = 1/k, j = 1,..., k. With
uniform a priori, the model’s posterior probability is
essentially decided by the likelihood function. If the
likelihood estimate of model M; is assumed to be normally
distributed with an error standard deviation of oy, it can be
written as

J

n S : 2
0_/\1/271_ exp(— Zt:l (y’ yt(%)) >7 (3)

where y, is observation at time step ¢, n is the size of data;
VdM,) is the jth model estimate at time #; and &, =y, — (M) is
the difference between the actual observation and jth model
estimate at time 7.

[8] Equation (3) is used to assign a higher probability to a
lower square error. By substituting (3) into (1), the posterior
probability of jth model can be calculated as

iy P(DB)p(3)
p(M;|D) Zf:lp(DIM;)P(M') 2
o
aj\;ﬁ exp e (yZUfy( ))> o)
= n —y 2
Y g.\l/i% exp <_ = (y;a?yt(M)) ) 7
(4)

As shown in equation (2), all models are used to calculate
the probability of the combined model’s output. Each model
is selected according to its posterior probability.

[9] In equation (4), the posterior probability of the jth
model is estimated by processing a batch of observations
(D) simultaneously. The limitation of batch calculation is
that each model’s posterior probability is fixed for the whole
simulation period. However, if certain models give better
predictions than others for a certain portion of the process,
using them may generate a better solution than using a fixed
weighting factor. Therefore, implementing the model
sequentially provides a flexible framework by which to
update models’ posterior probability using newly available
observations.
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[10] Similar to equation (4), Bayes rule can be expressed
in recursive form [Moradkhani et al., 2005; Petridis et al.,
2001]. Let y, be the observation of predictive variable at
time 7 and p, _ | (M) be the model prior distribution of the
jth model at time ¢, given the measurement up to # — 1, then
D: — 1 (M)) can be written as

pt*l(Mf) :p(M,-|d1,d2,...d,,1). (5)

The model posterior distribution in recursive form is
represented as

P(dt‘Mj) “Pi-1 (M]) .
Zfllp(dlei) pi-1(M;)

Dt (M) = (6)

Assuming the likelihood estimate of model M; at time ¢
being a normal distribution with zero mean, it can be

expressed as
~ 2
exp<_ (y’_yl(A/[.l)) > (7)

2
20;

1
pj(dt|Mf) = o2
j

Therefore, the posterior probability of the jth model is
calculated as

e

_ T .
Sk - ! exp ( it ;;?Ml)) ) -pi—1(M;)

(8)

As shown above, the posterior probability of the jth model
at time ¢ is determined by several factors: (1) The temporal
error of the jth model output (i.e., &, = y, — (M;)) (When the
temporal error of model estimate is high, the posterior
probability of the jth model (p, (M;)) decreases) and (2) the a
priori probability of the model (i.e., p; — | (1)) (the model’s
posterior probability is positive proportional to its a priori
probability).

[11] The model’s posterior probability is calculated using
the sequential Bayes’s rule (equation (8)) and is recursively
adjusted on the basis of available observations. The com-
bined model estimate is

k
E(i|My, My, .M, D)= E(v|M;, D)p:(M;ID),  (9)
where p, (M/|D) is the probability of the jth model; E(y,|M;,
D) is the expected value of the model M; estimate, and £
VM1, Ms,. . ., My, D) is the expected value of the combined
model estimate.

3. Fusion of Multiple Models for Streamflow
Forecasting

3.1. Rainfall-Runoff Models

[12] The process of transforming rainfall to runoff in a
watershed is very complex, and is influenced by factors
such as rainfall distribution, soil characteristics, physio-
graphic properties, and groundwater storage. Rain falling
over a watershed may travel through many alternative paths
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to become flow in a river. If the rainfall intensity is strong
enough, part of the rainfall may give rise to overland flow
that travels quickly to the river. Other portions, however,
may be detained on the surface or may infiltrate into the
ground, taking substantially longer to reach the river. This
complex, nonlinear process is not easily described by a
simple model [Chow et al., 1988; Linsley et al., 1982].
Many studies have addressed rainfall-runoff (R-R) process
modeling, and can provide a summary of model representa-
tion, identification, and calibration [Beven, 2001; Duan,
2003; Frevert and Singh, 2002].

[13] Although many models have been applied to simu-
late the R-R process, the process’s complex nature makes it
difficult for any one model to represent the process well at
all times. This study explores ways to combine multiple
models to improve the prediction of hydrologic processes.
Several models, including SAC-SMA, ARX, and ANN
models, were tested. A brief description of these models
is provided below.

3.1.1. SAC-SMA Model

[14] The SAC-SMA model is a conceptual multistorage
streamflow simulation model, developed and maintained by
the U.S. National Weather Service [Burnash et al., 1973].
The inputs to the model include mean basin precipitation at
the current time interval, 7(f), and mean basin evapotran-
spiration. A description of the SAC-SMA model and the
way it is calibrated by the shuffled complex evolution
(SCE-UA) algorithm [Duan et al., 1992] can be found in
[Sorooshian et al., 1993]. Discussions related to conceptual
rainfall-runoff model identification and use can be found in
work by Boyle et al. [2000, 2001], Gupta et al. [1998], and
Sorooshian et al. [1993].

3.1.2. ARX Model

[15] The ARX model is a linear dynamic function that
has been used extensively for predicting streamflow using
observed rainfall and runoff sequences [Wood and Szollosi-
Nagy, 1980]. A model of ARX(ny, n,) is represented as

n n
Vil = Z aiy—i + Z biri—j + €141, (10)
=0 =0

where a; and b; are parameters, and y(f) and r(¢) are the
observed streamflow and rainfall sequences, respectively.
The time unit ¢ is 1 day, and ¢, .  is the error of streamflow
estimation. The case study uses three previous time intervals
of rainfall and streamflow observations as the inputs to the
model (i.e., n; = ny, = 2).
3.1.3. Self-Organizing Linear OQutput Model

[16] ANN models have been found capable of modeling
nonlinear systems, and have been applied to solve many
hydrologic problems, such as runoff prediction and precip-
itation estimation from remote sensing measurements
[Abramowitz et al., 2006; Hong et al., 2005; Hsu et al.,
1995; Hsu et al., 1999; Moradkhani et al., 2004].
Additional ANN applications have been discussed in
several review articles [Govindaraju and Rao, 2000; Maier
and Dandy, 2000]. The case study applies a special ANN
model, named self-organizing linear output (SOLO), to the
R-R process [Hsu et al., 2002]. The SOLO model consists
of a classification layer based on a self-organizing feature
map (SOM) and a group of piecewise linear principal
component regression functions to fit different portions of
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Figure 1. Daily rainfall-runoff time series used in the model calibration: (a) rainfall and (b) streamflow.

the hydrologic process. A previous study [Hsu et al., 2002]
has shown that SOLO is very efficient and effective in
mapping the rainfall-runoff process. In the case study of this
article, input variables include x; = [y(¢), y(t — 1), y(t — 2),
r(t), r(t — 1), r(—2¢)], which is consistent with the variables
set in the ARX model. The size of the SOM network was set
to 15 x 15. A detailed description of the SOLO architecture
and model training can be found in work by Hsu et al.
[2002].

3.2. Study Area and Data Coverage

[17] The selection of test basin with reliable data set is
very important to the case study. During the test period, the
watershed should cover a long enough period of data record
to show a variety of flow patterns during the wet and dry
periods. The Leaf River basin, consisting of the above data
and hydrologic characteristics, is selected for this study.
From the literature, Leaf River basin has been investigated
by several researchers using conceptual hydrological mod-
els (such as SAC-SMA) and ANN models [Boyle et al.,
2000; Duan et al., 1992; Hsu et al., 2002; Sorooshian et al.,
1993; Yapo et al., 1998]. The drainage area of the watershed
is around 1948 km” and the data set includes daily
streamflow, precipitation, and potential evapotranspiration
estimates. For more detail description of the basin and data,
readers can refer to the publications from Brazil [1988] and
Sorooshian and Gupta [1983]. In this study, 36 years

(1953~1988) of data were selected for model calibration
and evaluation. With respect to the data record length used
in calibrating the model, Yapo et al. [1996] have suggested
that more than 8 years of data are required to obtain stable
parameters. The case study used the first 11 years of data for
model calibration (see Figure 1), while the other 25 years of
data were used to evaluate performance. Model compar-
isons are based on their ability to accurately predict
streamflow 1 day ahead.

3.3. Fusion of Multiple Models

[18] In the multimodel approach, perhaps the most im-
portant (and rather difficult) step is model adaptation: the
process of selecting a model in real time, when the data
become available sequentially. Here we explore four options
for combining models. Each model’s importance in model
integration is determined by a positive weight (probability),
where the summation of all model weights is expected to be
a unity. As expressed in equation (9), the higher a model’s
probability, the higher would be its degree of participation
in calculating the combined estimate. If a model’s weighting
factor (p(M;)) is equal to zero, the model makes no
contribution to the combined estimation; likewise, if a
model has a weighting factor of 1, it contributes fully in
generating the combined estimate. This study considered
several model combination strategies, as listed below.
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[19] 1. The arithmetic mean (AM) approach treats all
models equally. The probability assigned to each model is
(pM;|D) = 1/k for all models, where k is the number of
models being used in the model combination. Our study
used three basic models, where p,(M;|D) is set to 1/3, for all
models: je{1,2,3}.

[20] 2. In the weighted average (WA) approach the
probability of each model used in the combination is
calculated on the basis of the model’s performance in the
calibration phase. This probability is assigned according to
the model’s error variance as

pID) = (1/02) /(30 1/02),

where Jﬁj is the error variance of jth model, which is
calculated after model calibration. In our case, the
calibration data contains 11 years of the daily rainfall-
runoff time series. This probability is a fixed value that does
not change over time.

[21] 3. The sequential Bayesian model combination’s
(SBC) posterior probability is calculated on the basis of the
Bayes rule of equation (8), while the combined model
estimate is listed in equation (9). The model’s posterior
probability is adjusted recursively on the basis of newly
available observations. Consider that only three models were
included in both model calibration and validation, the
models’ initial priori probability is set to: p, = o (M;) = 1/3,
for all models j. In the forecasting mode, because
observations at time interval # + 1 are not yet available,
instead of using the a posteriori probabilities of model
estimates at time ¢ + 1, the posterior probability at time ¢ is
used.

[22] 4. The sequential maximum a posteriori probability
model selection (SMAP) setting selects only one model at
each time interval. The candidate model, j*, is selected
according to the maximum a posteriori probability, i.e., j* =
arg Mla)li{p, + 1 (M))}. This setting enables us to select one

=1

(1)

model with the best performance at each time interval. The
combined model estimate at time 7+ / is simply assigned as
Ve + 1 = ¥ + 1 (Mj). Again, because observations at
forecasting time interval # + 1 were not yet available, the
posterior probability at time ¢ is used to select the
best model at time # + 1. When the time interval progresses
to ¢+ + 1, an observation is obtained and each model’s
posterior probability at ¢ + 1 is updated.

3.4. Evaluation Statistics

[23] Five statistics frequently used in model evaluation
were selected. They are bias (BIAS), root-mean-square error
(RMSE), correlation coefficient (CC), Nash-Sutcliffe effi-
ciency coefficient (NSE), and mean absolute error for flow
> 200 cubic meters per second daily (cmsd) (MAE-Q200).
The first two statistics, BIAS and RMSE are related to the
mean and variance of residual, while CC and NSE are
nondimensional coefficients. All the above four criteria
evaluate the statistics for the whole calibration and valida-
tion time series of model estimates and observations. The
MAE-Q200, on the other hand, is a threshold, which only
evaluate model performance for observed flow greater than
200 cmsd. Dawson et al. [2007] provides a list of
generalized metrics for model evaluation. More information
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about the generalized evaluation matrices can be found from
HydroTest Web page, http://www.hydrotest.org.uk. Further
description of the evaluation statistics are listed below.

[24] 1. The bias estimates (BIAS) statistics gives the
mean of residual. The best value is zero; positive value
means model overestimates, while negative value infers
model underestimated:

BIAS = ZL, (e = »i)/n. (12)

[25] 2. The root-mean-square error (RMSE) statistics
calculate the variance of the residual. The RMSE is always
positive; the best value is zero; the higher the value, the
poor the model performance:

RMSE = /3" (i =51 /n 1. (13)

[26] 3. The correlation coefficient (CC): This is a dimen-
sionless index which evaluates the linear relationship be-
tween the observed and model estimated flows. The value is
in [—1 1]. The best value is 1.0:

CORR =y (v = ) (¥t = )
I3 =) ZZ; G = 3m)’

[27] 4. The coefficient of Nash-Sutcliffe efficiency (NSE)
index mainly refers model behavior to the mean value of the
reference data. The value 1.0 is the best, while zero means
that the model performs no better than the mean value of
reference data:

(14)

NSE=1-3" (i=3)/> " Gi—yu).  (15)

[28] 5. The mean absolute error for flow y, > = 200
cmsd(MAE(Q > = 200)) index calculates the absolute error
of observed flow crossover a threshold. The threshold value
can be assigned to different value to emphasize on different
flow ranges (for example, ThQ > = 200 cmsd for high flow,
and ThQ <= 10 cmsd for low flow). In this study, we select
flow greater than threshold thdQ = 200 cmsd. This index is
positive and the best value is zero:

MAE(Q >=200) = —
S Yty >200

[y: — . (16)

In above equations, y, is observed data at time t, y, is the
model estimate at time t, y,, is the mean value of observed
data, and y,, is the mean value of multimodel estimation.
For the sample size, n is the size of data, and ny is the data
sample size for y, > = 200 cmsd.

4. Case Studies

[20] Two cases are provided. The first case includes the
combination of three ARX models being trained from the
low-, medium-, and high-flow hydrographs, and compares
the result with the ARX, SAC-SMA and SOLO model
estimates trained from full data range. The second case
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Table 1. Evaluation Statistics for Single and Combined Models in Both the Calibration and Validation Data Periods®
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CAL VAL
Statistics NSE ~ RMSE  CORR  BIAS  MAE(Q>200) NSE  RMSE CORR  BIAS  MAE (Q >200)

ARX-L 0.855  23.77 0.930 0.001 96.66 0818  27.74 0.912 —0.01 91.23

ARX-M 0.839  24.99 0.948 0.117 123.33 082 2743 0.934 1.574 115.92

ARX-H 0914 1831 0956  —0.869 59.18 0894 2113 0947  —0.787 57.42

AM 0909 1881 0955  —0.250 83.29 0.887 2179 0.943 0.259 78.19

WA 0917  17.99 0958  —0.378 76.95 0.896  20.90 0.947 0.025 72.32

SBC 0955  13.17 0.979 0.342 46.67 0942 15.64 0.971 0.526 47.87

SMAP 0952 13.65 0.977 0.321 46.75 0938  16.14 0.969 0.554 48.56

ARX 0923  17.24 0961  —0.105 66.69 0900 2053 0.949 0.036 65.66

SAC-SMA 0918  17.79 0959 2292 64.93 0910 1943 0960  —5.444 56.37

SOLO 0960  12.36 0980  —0.075 44.44 0931  17.01 0965  —0.037 54.14

“Single models are ARX-L, ARX-M, ARX-H, ARX, SAC-SMA, SAC-SMA, and SOLO, and combined models are AM, WA, SBC, and SMAP.

demonstrates the combination of ARX, SAC-SMA, and

from flows covered in three different ranges: low flow,

ANN models in R-R modeling.
4.1. Case Study 1: Fusion ARX Models

medium flow, and high flow. Low flow indicates a daily
flow in the range of 0—10 cm, while medium flow indicates
a range 10—50 cm, and high flow indicates ranges higher

[30] Three ARX linear models served as the basic models
to simulate rainfall-runoff in the Leaf River Basin. These
three models share the same ARX structure (i.e., n; = n, =
2), while the model parameters are calibrated separately

Awverage Annual Flow: cmsd

60 _
8 (a) O O : validation year o o
g 40 ARXL 5 o calibration year e I
(2] o0 g
E 20 © ED o O = 8 o 9} ]
[nje) [¢]
O L L L L | L
0 10 20 30 40 50 60 7
60
. | ® .
g 401 ARXM o o
[&] o
g . o " =
20 - ngoo @ N
E (@) a g a
x o o i = °
0 L L L L | L
0 10 20 30 40 50 60 7
60
(c)
he)
€ 40 ARXH
o ) o
L-u- o]
[72] o
20+ o 0 o o N
5 ° D OO% DDD o o ¢}
O L L L L | L
0 10 20 30 40 50 60 70

than 50 cm. These three models, denoted as ARX-L, ARX-
M, and ARX-H, are calibrated from objective functions set
to fitting the models to low-flow, medium-flow, and high-
flow observations, respectively.

Figure 2. The root-mean-square error (RMSE) for testing models versus the average annual streamflow
(cmsd) for each water year. Models are (a) ARX-L, (b) ARX-M, and (c) ARX-H. The circles represent
the data covered in the calibration period, while the squares represent the data covered in the validation

period.
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Figure 3. Similar to Figure 2 but for models (a) AM, (b) WA, (c) SBC, (d) SMAP, (¢)ARX, (f) SAC-

SMA, and (g) SOLO.

[31] For each specified flow range, the optimal model

parameters, 0 = {a;, b;}; jc(0,12; are found by minimizing
the root-mean-square error (RMSE) of the streamflow
residuals in the specified flow ranges, as depicted below:

ARX —L: 0y, = argMin F(6) = min {Z vy — mz} ;
7

Vi € q1 € [0, 10]cmsd,

ARX — M :AR)?_*M = arg Mein F(0) = min |:Z O —j,)z] ;

Vi € qu € [10, 50]cmsd,

ARX — H :ARE_*H = argMein F(#) = min |:zt: 7 —JA/t)Z] ;

Vi € qu > 50 cmsd,

where 6% is the optimal parameters of model i; g7, qis, g
are stréamflows in the ranges designated as low, medium
and high; and y, and y, are the observations and model
estimates at time .

[32] The case study applied the recursive Bayes rule to
combine three linear ARX models for 1-day-ahead stream-
flow prediction. As described above, three ARX models
(ARX-L, ARX-M, and ARX-H) were calibrated using 11
years of data with objective functions set for flows in three
ranges (low flow: 0—10 cmsd; medium flow: 10—50 cmsd;
and high flow: > 50 cmsd) After the models were calibrated,
they were validated on the remaining 25 years of data.
Because these linear models were calibrated in three flow
ranges, it was expected that the ARX-L model would
perform well in low-flow predictions, and similarly that
the ARX-M and ARX-H models would forecast better in
the medium- and high-flow ranges.

7 of 15



W00B12 HSU ET AL.: A SEQUENTIAL BAYESIAN APPROACH W00B12
10°F T | =
R SAC-SMA ooo Obs.
5 A o O 2 U A U PO 1) Est.
(a) é 10
g
E q
.‘;’. L p
g
é’ 4
OF
8
&
1 | | | 1 | | | |
6000 6010 6020 6030 6040 6050 6060 6070 6080 6090 6100
g
(c) &
£
£
| | | | | | | | |
6000 6010 6020 6030 6040 6050 6060 6070 6080 6090 6100
g
(d) g
E
2
®
| | | | | | |

|
6030

6000 6010 65040

|
6050 6090

DAY

Figure 4. A close view of simulation flow time series from (a) SAC-SMA, (b) ARX-L, (¢) ARX-M,
and (d) ARX-H models within the 100-day simulation period. Observations are marked with squares, and

model estimates are shown by solid lines.

[33] Although each model is expected to work well for
flow prediction in its calibrated range, the quality of its
estimates for ranges other than the calibrated one may not
be consistent. The case studies used the recursive Bayes rule
to calculate each model’s posterior probability, which in
turn was adaptively adjusted at each time interval when new
observations became available. The expected value of the
combined ARX prediction was calculated by E(y/|M;, M,
Ms, D) = 30 \y(M)p(M;|D). When j = I, the model
estimate was taken from the ARX-L model, whereas j = 2
and j = 3, the model estimates were taken from ARX-M and
ARX-H, respectively. The posterior probability of the jth
model was calculated on the basis of Bayes rule (see
equation (8)).

[34] The initial a priori probability of a model is set to a
uniform probability distribution for all models, i.e., p, —
(M)) = 1/3 for all models (j = 1...3). Gaussian likelihood
functions are assumed to have a zero mean error and a
variance (af) calculated from the model residual over 11
years of calibration data (see equations (7) and (8)). To
avoid the convergence of model’s probability to zero, we set
a threshold (4) for the posteriori. If the posterior probability
of a model p/(M)) is degenerated to zero, the model would

not be able to move out of zero probability in a later time
step. In this study, we set the threshold (%) equal to 0.01 in
all models, if p(M;) < 0.01.

[35] Ten models listed in Table 1 were evaluated. The
study includes three basic ARX models (ARX-L, ARX-M,
and ARX-H) and four merged models (AM, WA, SBC, and
SMAP), which were combined in various forms from those
three ARX models. Also, the ARX, SAC-SMA, and SOLO
models are provided for the comparison.

[36] When combining models, the probability of models,
PpAM;), is considered to be fixed or varying in time. The
combined weights of AM and WA were fixed at all times for
all three ARX models. The AM assigns constant weights as
pM) = {1/3, 1/3, 1/3} to {ARX-L, ARX-M, ARX-H}
models, and the WA, on the other hand, assigns p(M;) =
{0.2785, 0.2520, 0.4695} to those three ARX models.
These probabilities were calculated from the error variations
of the calibrated models (equation (11)), where the high-
flow model (ARX-H) takes a higher probability, as its error
variance (O'EZA P 18.31%) is lower than that of the low-
flow (a_fm = 23.77%) and medium-flow (JEZA e 24.99%)
models.
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Figure 5. Similar to Figure 4 but for model estimates from (a) SAC-SMA, (b) AM, (c) WA, (d) SBC,

and (e) SMAP models.

[37] Sequential calculations were used to assign variable
posterior probabilities to the combined models SBC and
SMAP. The SBC calculates each model’s posterior proba-
bility recursively. When the observed flow is in the low-
flow range, the likelihood function favors the ARX-L model
and augments its posterior probability; therefore, the
merged prediction is highly weighted toward the low-flow
ARX-L model. Likewise, when the observed flow hydro-
graph is in the high-flow range, ARX-H provides a better
basic model prediction, and the SBC assigns a higher
likelihood to the ARX-H, thereby increasing its posterior
probability. As higher probabilities are shifted toward mod-
els capable of providing better prediction, the combined
model’s overall performance improves. The SMAP selects
only one model with the highest posterior probability to
generate a prediction at each time step.

[38] Table 1 summarizes the performance of the individ-
ual models and various multimodels in the calibration and
validation years. It shows that the both ARX (fully range
calibration) and SAC-SMA models outperform all three
ARX models (ARX-L, ARX-M, ARX-H), with higher
NSE and CORR and lower RMSE estimates. The BIAS,
however, SAC-SMA is somewhat higher in both calibration
and validation periods. For the combined models with fixed
probability at all times (i.e., AM and WA), the performance

is very close to that of the ARX and SAC-SMA in both the
calibration and testing periods. The SOLO model, on the
other hand, outperforms all the other models in the evalu-
ation. SOLO can be considered as a version of multimodel
system using a set of 15 x 15 ARX models in its
forecasting. In addition, data preprocessing using principal
component regression also helps to find stable the regres-
sion parameters. And therefore, it is not surprising that the
SOLO model can outperform the other models.

[39] Five performance measures for models {SBC,
SMAP, ARX, SAC-SMA, and SOLO} were calculated in
the validation period, as NSE = {0.942, 0.938, 0.900, 0.910,
0.931}, RMSE = {15.64, 16.14, 20.53, 19.43, 17.01 cmsd},
CORR = {0.971, 0.969, 0.949, 0.960, 0.965}, BIAS =
{0.526, 0.554, 0.036, —5.444, —0.037 cmsd}, and MAE(Q
>=200) = {47.87, 48.56, 65.66, 56.37, 54.14 cmsd}. These
statistics demonstrate that both SBC and SMAP outperform
ARX and SAC-SMA in all evaluation categories. In addi-
tion, the SBC performs the best of all the combination
schemes except the SOLO model. From the MAE(Q > =
200), both SBC and SMAP are better than SOLO. Figures 2
and 3 display the RMSE versus the average annual stream-
flow for ARX-L, ARX-M, and ARX-H models on each
water year. The circles represent the calibration years, while
the squares represent the validation years. Figures 2 and 3
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Figure 6. Sequential Bayesian simulation and model selection in the validation period (1964—1988):
(a) daily rainfall time series, (b) daily streamflow time series, (c) posterior probability of the ARX-L
model, (d) posterior probability of the ARX-M model, (e) posterior probability of the ARX-H model, and
(f) the model identified as having the maximum a posteriori probability.

show that error variance increases with a year’s “wetness”
(i.e., the annual RMSE increases with annual streamflow).

[40] An arbitrary line is added to each graph from (0, 0)
to (70, 40) to provide a basis for simple visual comparison.
The SAC-SMA model (see Figure 3) performed well on
high-flow (wetter) years but not as well on low-flow (drier)
years. SOLO model, however, shows consistently well in
both high- and low-flow years. The annual RMSE plot
of ARX-H is similar to the SAC-SMA plot. SAC-SMA
and ARX-H share very similar evaluation statistics (see
Table 1), although in general, SAC-SMA performs better.
The ARX-L and ARX-M models, with most annual RMSEs
above the reference line, do not perform well in high-flow
years. Comparing the SAC-SMA and ARX with the com-
bined models (see Figure 3) in terms of daily RMSE and
annual streamflow, the fixed weight models (AM and WA)
perform better in low-flow years, but still have considerably
higher RMSEs in high-flow years. The combined models
with adjustable weight (SBC and SMAP) show better
statistics than SAC-SMA and ARX in both low- and
high-flow years. The performance of SOLO model is

similar to the SBC and SMAP, but substantial better than
AM and WA.

[41] The daily time series of estimates shows that the
SAC-SMA model missed a few low flows, but in general fit
the observed flow very well and showed generated flows in
a more or less log linear relationship for the flows in the
recession period. On the other hand, the ARX-L estimates
fit very well with observations in the low-flow periods;
ARX-M missed several low flows, but fit better in both
medium and high flows; and the ARX-H fit very well over
the high-flow period, but missed both medium and low
flows substantially. Figure 4 displays the simulation within
a 100-day period. Both the SAC-SMA and ARX-H models
fit well in high-flow periods, but the ARX-L is expected to
fit better than the others in the low-flow ranges.

[42] From the validation results from the multimodels
(AM, WA, SBC, and SMAP), it shows that the combined
models with fixed weights (i.e., AM and WA) tend to give
estimates between the models’ highest and lowest values.
Although they improved the overall statistics from the
ARX-L, ARX-M, and ARX-H models (see Table 1), they
tended to overestimate medium and low flows and under-
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Figure 7. A close view of multimodel simulation and selection in the 5-year simulation period: (a) daily
rainfall time series, (b) daily streamflow time series, (c) posterior probability of the ARX-L model, (d)
posterior probability of the ARX-M model, (e) posterior probability of the ARX-H model, and (f) the
model identified as having the maximum a posteriori probability.

estimate high flows. However, combined models with
adjustable weights based on the posterior probability of
ARX models showed the ability to give estimates extending
to a much wider range of values than those of fixed-weight
combined models. Compared with AM and WA, the SBC
and SMAP models substantially improved estimates in the
middle-flow section. Although the SBC and especially the
SMAP models showed several spikes in the estimates for
low-flow days, their overall performance, as shown in Table

1, was significantly better than that of the others. For better
visualization of model estimates in different combinations,
100 days of simulated streamflow are shown in a logarith-
mic scale in Figure 5. The AM and WA showed a high
residual, while the SCA-SMA performed well in high-flow
ranges, but missed some medium to low flows. The SBC
and SMAP, on the other hand, performed consistently
throughout the flow ranges.

Table 2. Evaluation Statistics for Single Models and Combined Models in Both Calibration and Validation Data Periods®

CAL VAL

Statistics NSE RMSE  CORR BIAS MAE (Q > 200) NSE RMSE  CORR BIAS MAE (Q > 200)
ARX 0.923 17.24 0.961 —0.105 66.69 0.900 20.53 0.949 0.036 65.66
SAC-SMA 0918 17.79 0.959 —2.292 64.93 0.910 19.43 0.960 —5.444 56.37
SOLO 0.960 12.36 0.980 —0.075 44.44 0.931 17.01 0.965 —0.037 54.14
WA 0.961 12.28 0.981 —0.824 44.64 0.947 14.84 0.974 —1815 45.49
SBC 0.975 9.735 0.988 —0.012 31.23 0.968 11.54 0.984 —0.775 32.55
SMAP 0.973 10.25 0.986 —0.005 31.94 0.964 12.32 0.982 —0.781 34.64

Single models are ARX, SAC-SMA, and SOLO, and combined models are WA, SBC, and SMAP.
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Figure 8. Simulation time series of testing models (1986—1988).

[43] The SBC requires the posterior probability data from
the basic ARX models at each time interval, while the SMAP
merging strategy picks up the estimate from the ARX model
with the highest probability. Figure 6 displays the sequential
evolution of model combination and selection based on the
ARX models’ posterior probability. Figures 6a and 6b show
the rainfall and runoff time series. Figures 6¢c—6e describe the
probability of the ARX-L, ARX-M, and ARX-H models at
each time interval. SBC merges the three ARX model
estimates on the basis of their probability. Figure 6f shows
the ARX model with the highest probability at each time
interval. Finally, the SMAP merging model essentially selects
the ARX estimate with the highest probability.

[44] A close look at the probability evolution of ARX
models through the first 5-year validation period is listed in
Figure 7. During this time period, from day 1100 to day
1450 in Figures 7b—7e, streamflow increases from low flow
(day 1100) to high flow (around day 1300) and then
decreases to low flow (around day 1450). The ARX models’
probability is consistent with the choice to assign higher
probability to the ARX-L model for the low-flow period, to
the ARX-M model for the medium flow, and to the ARX-H
for the high flow, and then reverses the order that assigned
high probability to the ARX-L and low probability to the
ARX-H and ARX-M during the recession period. The
model selection pattern is repeated over the 5-year period.

[45] The model with the highest probability of all the ARX
models is plotted in Figure 7f, which shows how SMAP
selects a model from all the ARX models. The selected
models (ARX-L and ARX-H) correspond very well to the
flow status (low and high flows) at the specified time period.

4.2. Case Study 2: Fusion of ARX, SAC-SMA,
and SOLO Estimates

[46] Case study 2 describes the combination of estimates
from three different R-R models (ARX, SAC-SMA, and
ANN). The ARX is a linear system model, SAC-SMA is a
conceptual hydrologic model, and SOLO is a neural net-
work model. Similar to case study 1, all these models are
calibrated from 11 years of data and then validated using
25 years data. All these models were trained for 1-day-ahead
streamflow forecasting.

[47] Three combined models (WA, SBC, and SMAP) were
calibrated and validated in the same data period. Table 2
summarizes the performance of all these models. In the basic
model group, SOLO outperforms the others in all evaluation
criteria. Evaluation statistics for ARX and SAC-SMA are
close, and ARX performs slightly better in the calibration
period, while SAC-SMA shows better performance in the
validation period.

[4¢] The combined models (WA, SBC, and SMAP)
showed better statistics in almost all evaluation criteria
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Figure 9. (a) Rainfall and (b) runoff time series (1986—1988); posterior probability of (c) ARX,
(d) SAC-SMA, and (e) SOLO models; and (f) the model with the maximum probability.

except the BIAS index (see Table 2), in which the ARX and
SOLO models give the lowest values. For the other indexes,
NSE, RMSE, and CORR, the combined models give
substantially better results than ARX, SAC-SMA, and
SOLO. This performance was consistent in both calibration
and validation events.

[49] For the combined models in the calibration period,
SBC and SMAP significantly outperformed WA; the RMSE
was 9.73 and 10.25 cmsd for SBC and SMAP, but was
12.28 cmsd for WA. Similarly, in the validation period, the
RMSE for SBC and SMAP was 11.54 and 12.32 cmsd, but
was only 14.48 cmsd for WA. For the other statistics, such as
NSE, CORR, BIAS, and MAE(Q > = 200), it is clear that
SBC and SMAP are better than WA. As previously stated, the
model weights for SBC and SMAP were adjusted at each time
interval, while WA is a fixed-weight scheme whose weights
were calculated from the calibration data. In general, a
significant gain in accuracy from sequential adjustment was
observed.

[s0] The daily time series of the ARX, SAC-SMA, and
SOLO models during the validation years (1986—1988) are
listed in Figures 8a—8c. The ARX model fit well in the high-
flow period, but registered rather spiky for the predictions in
both medium- and low-flow periods. The SAC-SMA model
fit the observed flow well, registering as somewhat log linear
in the flow’s recession period. The SOLO model seems to fit
well with the observations for most periods. The time series
plots of the combined models (WA, SBC, and SMAP) in the

same validation period are plotted in Figures 8d and 8e. The
model combined with fixed weights (WA) showed good
fitting over the high-flow period, but either overestimated
orunderestimated values in part of the medium- and low-flow
periods. Unlike the ARX estimates, the averaging of multiple
estimates caused the WA time series to be smooth throughout
the validation period. The flow for SBC and SMAP models fit
generally well at all ranges (see Figures 8e and 8f). As shown
in the evaluation statistics in Table 2, SBC and SMAP
outperformed the other models in all evaluation criteria.
Table 2 shows that SBC’s performance is better than
SMAP’s, although the graphic in Figure 8 suggests that they
are very close.

[51] Figure 9 shows the rainfall (Figure 9a) and the runoff
(Figure 9b) time series; the posterior probability of ARX
(Figure 9c), SAC-SMA (Figure 9d), and SOLO (Figure 9¢)
models; and the model with the highest probability (Figure 9f).
The models’ posterior probability plot (see Figures 9c—9¢)
makes it clear that of all the combination models, the SOLO
model covers most of the time periods studied (see
Figure 9f), while the others (ARX and SAC-SMA) cover
only a limited time during the high-flow and recession
periods. The low-flow period is covered mainly by the
SOLO estimates. Again, as shown in Figure 9f, if only
one model was selected at each time interval, the SOLO
model was selected for more than 80% of the simulation
periods, while the ARX and SAC-SMA models were
selected for 8% and 12%, respectively.
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[52] The improvement from the SBC and SMAP is
mainly from the continuing adjustment of model probability
through new available observations as well as the model’s
priori probability. As there is no perfect model, each model
may estimate better for certain flow ranges. Providing a
suitable framework being capable of selecting effective
models for generating prediction is critical. Bayes’ rule
provides a basic framework for sequential model section.
Although from case studies, multimodel fusion approaches
(e.g., SBC and SMAP) output perform those fixed proba-
bility approaches (e.g., AM and WA) consistently, for the
operational hydrology, potential issues may be raised from
the observation which is not available in real time. When
the time latency of observations increases, the model tends
to give prediction without appropriate information and
therefore the forecasting skill can be downgraded substan-
tially. In the case studies, we only consider for one time step
ahead (¢ + 1) prediction of streamflow from multimodels,
the prediction uncertainty may arise when the forecasting
time step extended. As the prediction extended for three
time steps (e.g., ¥, + 3), for example, one key uncertainty is
from to the precipitation forcing (i.e., , + | and r; 4 )
prediction being not reliable at time ¢ + 1 and ¢ + 2.
Meanwhile because the observed streamflow is not available
for the next two time steps, all the models need to either give
their forecasts from the time delayed observations to up to
current time, or use model predictions at time ¢+ 1 and ¢ + 2,
(ie., J; + 1 and ¥, 4 ,). In the study, we introduced using
sequential modeling techniques in fusion several model
estimations. The capability of multiple time step prediction
using the sequential Bayesian model selection approach will
be explored in the continuing investigation.

5. Conclusions

[53] This paper has discussed several multiple-model
estimates for watershed runoff prediction. The proposed
multiple-model approaches (SBC and SMAP) use the
sequential Bayesian rule to calculate and update individual
models’ probability. A weighting factor for model combi-
nation then was assigned according to the probability
assigned to each model. Case studies demonstrated that
the multiple-model strategy is effective for improving
streamflow forecasting. Two case studies were demonstrat-
ed using (1) three basic linear ARX models, and (2) three
more sophisticated models (ARX, SAC-SMA, and SOLO).
The evaluation shows that although using fixed weights for
model combinations (e.g., AM and WA) may improve
overall prediction performance, they may not be optimal
for every time interval. Setting the weighting factor so that it
is sequentially adjustable may improve the estimates for
most portions of the hydrograph. The SBC and SMAP
approaches enabled us to combine model estimates adap-
tively according to their conditional probability, calculated
up to the most nearest observations available. The evalua-
tion of SBC and SMAP showed that their performance was
better than those of the individual models and the fixed
weighting factor fusion methods, such as AM and WA.

[54] The SBC and SMAP model fusion approaches can
be generalized to combine estimates from all kinds of
models, such as physically based, conceptual, and data-
driven models (e.g., SAC-SMA, ARX, artificial neural
networks and fuzzy rule—based models). Experiments
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including other types of models will be explored in future
studies.
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