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ABSTRACT

Data assimilation in the field of predictive land surface modeling is generally limited to using observa-
tional data to estimate optimal model states or restrict model parameter ranges. To date, very little work
has attempted to systematically define and quantify error resulting from a model’s inherent inability to
simulate the natural system. This paper introduces a data assimilation technique that moves toward this goal
by accounting for those deficiencies in the model itself that lead to systematic errors in model output. This
is done using a supervised artificial neural network to “learn” and simulate systematic trends in the model
output error. These simulations in turn are used to correct the model’s output each time step. The technique
is applied in two case studies, using fluxes of latent heat flux at one site and net ecosystem exchange (NEE)
of carbon dioxide at another. Root-mean-square error (rmse) in latent heat flux per time step was reduced
from 27.5 to 18.6 W m�2 (32%) and monthly from 9.91 to 3.08 W m�2 (68%). For NEE, rmse per time step
was reduced from 3.71 to 2.70 �mol m�2 s�1 (27%) and annually from 2.24 to 0.11 �mol m�2 s�1 (95%).
In both cases the correction provided significantly greater gains than single criteria parameter estimation on
the same flux.

1. Introduction

Mathematical models of natural systems, primarily
built to make predictions of systems’ behavior, are usu-
ally tested using measurements of the variables pre-
dicted by the model. Any systematic procedure that fur-
ther uses physical measurements to actually improve

model simulation may be termed “data assimilation.”
Classically in the field of land surface modeling, data
assimilation has meant model state estimation (e.g., soil
moisture or soil temperature). Measurements of state
variables are used, for example, to update a model’s
predicted values for a period leading up to the present
before running the model forward in time in order to
make a weather prediction.

Two vital assumptions are made in this type of con-
figuration. The first is that the model’s parameters, the
time-independent variables that describe the conditions
under which the model is operating, are correctly cho-
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sen. The second is that the model itself, the chosen
representation and coupling of physical processes, is
actually capable of making a prediction with the accu-
racy and precision that is required. It is now well rec-
ognized that when equations representing physical pro-
cesses within a model are developed at different spatial
and temporal scales to those at which the model is ap-
plied, many model parameters are not directly measur-
able. This leaves the modeler with little choice other
than to choose “behavioral” parameter values: those
whose resulting model output matches observed data
well. This procedure, commonly called parameter cali-
bration, is also in some sense a data assimilation tech-
nique. It too, however, makes the assumption that the
model in question is capable of reproducing the natural
system’s behavior; all that is required are the “correct”
model parameters.

In this paper we use observed data to critique the
model itself. We will demonstrate, using a single land
surface model, that systematic problems in model simu-
lation resulting from model limitations (rather than pa-
rameter mis-prescription) are of far greater significance
than the limitations in the accuracy and precision of the
observational data used to validate the model. Indeed
in the cases presented here, systematic errors resulting
from model parameterization problems play a greater
role in the model’s inability to match observational data
than the choice of parameter values. We make it clear
that by “model parameterization” we refer concur-
rently to what others may refer to as “model structure“
and “model physics.”

We use the Commonwealth Scientific and Industrial
Research Organisation (CSIRO) Biosphere Model
(CBM) (Wang and Leuning 1998; Leuning et al. 1998),
a land surface model developed at CSIRO Atmo-
spheric Research, and examine the existence of system-
atic trends in the output error. If we can isolate, quan-
tify, and predict such trends, then not only should we be
able to correct them, but additionally gain insight into
which parts of the model parameterization are ripe for
improvement.

We do this by using an artificial neural network
(ANN) to simulate model output error as a function of
the model’s inputs (meteorological forcing) and some
outputs on a per-time-step basis (Fig. 1). As an ex-
ample, the ANN may learn to simulate latent heat flux
error (the ANN output) as a function of observed
downward shortwave radiation, observed humidity, and
modeled soil moisture (the ANN inputs). This involves
a training phase (Fig. 1a) and a testing/simulation phase
(Fig. lb). The training phase involves providing the
ANN with a time series of input–output pairs from
which it establishes the functional dependence (hence

both ANN inputs and ANN output are directed toward
the ANN in Fig. 1a). The end result is a set of ANN
parameters or weights. During the testing or simulation
phase (Fig. lb), these weights are used by the ANN to
make a prediction of the model’s error (based on the
errors made by the model under similar conditions dur-
ing the training phase). This prediction is used to make
a correction to the model’s output.

This approach differs from state-constraint tech-
niques such as Kalman filtering in a number of ways.
First, corrections to model states are correcting only for
those parameterizations within the model that affect
the specific state in question. The process described
above corrects for all model parameterizations affect-
ing model output. Second, while implementations of
the Kalman filter usually assume zero model bias, this
technique specifically attempts to capture the bias.
Third, the use of a neural network means the bias re-
lationships learned by the ANN from the testing set can
be used to make prognostic corrections. That is, the
technique has predictive capability. While the use of
ANNs in the natural sciences is not new (see Maier and
Dandy 2000) applications to model bias have been very
limited (e.g., Martínez and Velázquez 2001; Tetko
2002).

To capture the systematic component of model out-
put error, we need to make a careful choice of ANN.
Here we use the regression-based Self-Organizing Lin-
ear Output (SOLO) ANN (Hsu et al. 2002), precisely
because it simulates only the systematic part of the
training data with which it is provided. If it is simply
trained with noise, it will make a zero-value simulation.

FIG. 1. Configuration for (a) training the ANN and (b) testing
the ANN. Shaded boxes represent the goal of each phase. During
the training period, the ANN is provided with a set of input–
output pairs from which it will establish a functional relationship,
recorded in the ANN weights. This relationship is tested by using
the ANN to make a correction to model output using “unseen”
data.
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In this paper, we show the prevalence of systematic
error in CBM’s output as well as the ability of the re-
gression-based SOLO ANN to capture this error by
making a (statistically based) correction to the model at
every time step. We use an ensemble of model runs,
derived from multiple-criteria parameter estimation, to
show that this systematic error is not a result of poor
parameter choices. The combination of these two pro-
cesses defines the Neural Error-modeling Regression-
based Diagnosis (NERD) tool.

To begin, we discuss the attribution of error in model
output and how we minimize contributions to this error
from all sources other than the model itself. We will
then detail the datasets, land surface model, and neural
network used for the experiment before outlining how
they are used together.

2. Defining error

We wish to create conditions under which error in
model output results primarily from the model’s inher-
ent inability to simulate the natural system. We can
represent a deterministic, discrete time step model
functionally as

Yt � M�It, �, �t�1�, �1�

where Yt are the model outputs for time step t, It the
model inputs, � the (time invariant) model parameters,
and �t�1 the model states from the previous time step.
We can then represent the simulation error as

E��, It, Ot, �t�1, M� � Yt � Ot, �2�

where Ot are observations of the model outputs made
concurrently with the model inputs. This equation sug-
gests five possible sources of model output error: errors
in �, the model parameters; observational error in the
input and model validation data, It and Ot; mis-prescrip-
tion of initial states, �t�1; model parameterization or
structure inadequacy, M.

We now outline how we attempt to ensure that the
systematic component of model output error, E, is due
only to M, and not the other four sources. We addition-
ally try to characterize systematic error in a way that is
relatively insensitive to our choice of parameter set. We
deal with each of the five possible error sources in Eq.
(2) in turn.

a. Choosing model parameter values

We set about identifying parameter sets that are as
close as possible to being “correct.” While ideally this
means we want the values that are those of the natural
system, not all parameters are physically observable.

This is often because the parameterization of physical
processes included in the model has been developed at
spatial and temporal scales different to those at which
the model is applied. This leaves us with little choice
when choosing parameter values other than to use in-
tuition and physical reasoning, and/or to choose the
values that make the model perform best. We will refer
to parameter sets that make the model best match ob-
servations as behavioral. By definition the process of
choosing values based on a model’s posterior adher-
ence to observations (commonly known as calibration)
decreases the error in simulations. It does not, however,
guarantee that parameter values so obtained are physi-
cally meaningful, nor that they would be successful in
any other model (Franks et al. 1997). However, since
models may include unmeasurable parameters, it seems
we can do nothing better than to estimate them in this
way. This is essentially what we do here with CBM.

As a starting point, we restrict the ranges of “unob-
servable” parameters to values within physical limita-
tions and intuition based on observational experience.
This restricted range, �, termed the feasible parameter
space, forms the basis for our calibration. To calibrate,
we attempt to find a parameter set, � ∈ �, so that some
objective function f(� ) is minimized, for example root-
mean-square error (rmse) in latent heat. We use fixed
initial states and ignore error resulting from observa-
tions and model inability, so that we minimize

f ��� � �	
t�1

T

E��, It, Ot, �t�1, M�2

T
�

1�2

� �	
t�1

T

E���2

T
�

1�2

for � ∈ �

in the case of rmse, where T is the total number of time
steps. Methods that undertake such a search of the fea-
sible parameter space for an objective function mini-
mum are many, and have varying degrees of success
depending on the complexity of the surface formed by
the objective function in question (Gan and Biftu 1996;
Vrugt et al. 2003b).

These procedures choose parameter values for our
multiple-output model that minimize error in only one
of its outputs. Many single output criteria search algo-
rithms deal with this problem by declaring that the
“ideal” parameter set is the one that minimizes, for
example, the weighted sum of the objective functions of
each model output,

f ��� � w1 f1��� 
 · · · 
 wnfn��� for � ∈ �.

�3�
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Here n is the number of model outputs for which we
have validating observational data, and the wi are
weights. This presupposes, however, that the units of
each objective function term are commensurable. For
example, that a unit decrease in rmse of latent heat flux
(watts per meter squared) is comparable to a unit in-
crease in rmse of soil temperature (kelvin). It should be
clear that these two quantities, even if weighted, are not
objectively comparable.

Multiple criteria calibration techniques seek to avoid
this problem by acknowledging that we ideally wish to
find � so that

F��� � �f1���, . . . , fn���� for � ∈ � �4�

is minimized, in the sense that all the fi are minimized
simultaneously, regardless of their unit of measure. In
common practice, of course, no such parameter set
exists. Instead we are left with as many “optimal” �
as there are criteria fi. This leads us to define an opti-
mal region of the feasible parameter space rather than
a single point (Gupta et al. 1999). This region, �, has
the property that of any two distinct points within it,
one always performs better than the other in at least
one of the criteria, but never all. That is, for all �a, �b

∈ (� ⊂ �)

fi��a� � fi��b� and fj��a� � fj��b� for some

1 � i, j � n. �5�

This “noninferior” region of the parameter space is
commonly called the pareto set. It is illustrated for a
two-dimensional parameter space with two model out-

put error criteria in Fig. 2, where the dark line repre-
sents the pareto set. The points � and � are the minima
of the two criteria objective functions f1 and f2, respec-
tively. In the parameter space diagram, the two sets of
concentric circles represent level curves for the two ob-
jective functions. The shaded region represents the pro-
jection of the parameter space onto the criterion space.

In this paper, the multiple-criteria technique we em-
ploy to obtain a pareto set for CBM is the Multi-
Objective Shuffled Complex Evolution Metropolis al-
gorithm (MOSCEM-UA) (Vrugt et al. 2003a), which
essentially combines the Multi-Objective Complex
Evolution (MOCOM-UA) (Yapo et al. 1998) and
Shuffled Complex Evolution Metropolis (SCEM-UA)
(Vrugt et al. 2003b) methods. Details of the nature of
the specific search algorithms employed can be found in
Vrugt et al. (2003a) and Vrugt et al. (2003b), and a
more general discussion of the benefits of the multiple-
criteria approach can be found in Gupta et al. (1999).

For a given model, the calibration process provides
us with a collection of parameter sets, the pareto set,
each member of which contains parameter values that
are both realistic and behavioral with respect to at least
one of the model outputs for which we have measure-
ments. Our stated goal was to ensure that errors in
output from a given model could not be attributed to
parameter misprescription. Which point should we then
choose from the pareto set to run the model with? Ide-
ally the answer is all of them, since we have no grounds
to declare any one point universally “better” than an-
other. That is, if we wish to characterize the nature of

FIG. 2. The parameter and criteria space in a two-criteria, two-dimensional parameter
calibration setup. The dark line between the two criteria’s minima, � and �, represents the
noninferior or pareto set, while the concentric circles in the parameter space represent level
curves for the two criteria objective functions. The shaded region represents the projection of
the parameter space into the criterion space, and � is the “compromise point” defined in Eq.
(12) (modified after Gupta et al. 2002).
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the systematic component of model output error at a
particular site in a way that is independent of a given
parameter set, we must include analysis of model runs
using all realistic and behavioral parameter values. In
practice we are limited by finite computing power, so
that “all” needs to become a reasonably small, manage-
able number while still adequately representing the
range of parameter sets within the pareto set. We will
discuss how we have selected such subsets in our ex-
perimental setup in section 6.

b. Error in state initialization and observations

We now look at the other two sources of error de-
scribed in Eq. (2), error in observed data and model
initialization, which may cause systematic error in
model output not originating from model parameter-
ization weaknesses.

State initialization issues are commonly dealt with by
what is referred to as model spinup. This involves run-
ning the model on the simulation dataset repeatedly
until the model states reach equilibrium, at which point
we begin recording model output. Using a spinup pe-
riod usually ensures that model performance is insen-
sitive to initial state values and this was indeed the case
for the experiments conducted here (see section 6).
There is, however, another way that we might interpret
“initial state error.”

Equations (1) and (2) represent model behavior for a
particular time step during a simulation. If for a mo-
ment we ignore error arising from observational (It and
Ot) and parameter (� ) uncertainty, then model output
error not arising from model inability comes from the
states of the previous time step, �t�1. Even though we
have employed a model spinup period, and hence the
value of �t�1 is insensitive to the first time step’s state
values, �1, there is no reason to believe that �t�1 will be
as measured on site. It is commonly accepted that
model states, such as soil moisture and temperature,
may “drift” from observed values. The passing of state
values from time step to time step, therefore, represents
an internal feedback mechanism, since �t�1 is a function
not only of initial state values, but the model inability,
parameter value, and input data errors from every time
step since the first. This may influence the nature of any
systematic error in model output.

This problem will be dealt with in part by ensuring
that model states are used as ANN inputs. That is, state
values will partially form the set of conditions from
which the ANN will be trained to recognize model er-
ror. We will discuss this in more detail, together with
other possible approaches to dealing with the problem
in section 8.

Issues of accuracy in model input (meteorological)

and validation (flux) data are not dealt with explicitly in
this paper. As we will see after discussing the structure
of the SOLO ANN in section 5, this is unlikely to in-
fluence the results presented here unless they are of a
systematic nature. Systematic problems in observa-
tional data, where known, need to be dealt with indi-
vidually and are outside the scope of this paper.

In the following sections we outline the datasets, land
surface model, calibration algorithm, and type of neural
network used in this paper. Quite some time will be
spent discussing the workings of the neural network, as
its structure is vital to the success of the NERD process.
We then detail how these elements are combined dur-
ing the training and testing phases of the neural net-
work.

3. Datasets

To illustrate the technique we use two datasets. The
first was collected at Cabauw in the Netherlands
(51°58N, 4°56E) and is described in detail by Beljaars
and Bosveld (1997). The site consists mainly of short
grass divided by narrow ditches, with no obstacle or
perturbation of any importance within a distance of
about 200 m from the measurement site. Climate in the
area is characterized as moderate maritime with pre-
vailing westerly winds. Variables available, at 20-m
height in 30-min intervals for the year 1987, include
downward shortwave radiation, downward longwave
radiation, air temperature, wind, specific humidity, sen-
sible heat flux, latent heat flux, ground temperature,
net radiation, and ground heat flux. These data were
used by the Project for the Intercomparison of Land
surface Parameterization Schemes (PILPS) (Hender-
son-Sellers et al. 1995) as both atmospheric forcing and
observed flux data, in an evaluation of the performance
of a suite of land surface schemes (Chen et al. 1997). As
part of this experiment a default parameter set was
provided, which we will use here to help quantify the
gains made by parameter estimation.

The second was collected at the Harvard Forest site
in Massachusetts (42°32N, 72°10W). This cool moist
temperate deciduous forest site consists of a mixture of
hardwoods and conifers, with vegetation height around
25 m near the 30-m measurement tower. The measure-
ment site has an elevation of around 300 m, with mainly
sandy loam soils. Hourly averages for the years 1992–99
of the following variables were used: air temperature,
downward shortwave radiation, wind speed, relative
humidity, rainfall, surface soil temperature, CO2 flux,
latent heat flux, and sensible heat flux. Downward long-
wave radiation was synthesized using the Swinbank ap-
proximation (Swinbank 1963). Unlike Cabauw, for
simulations at Harvard Forest, we used time-dependent
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leaf area index, derived from on-site measurements.
The carbon flux measurements used here are discussed
in Barford et al. (2001). (For a list of publications and
details of site instrumentation see http://www-as.
harvard.edu/chemistry/hf/.)

4. The CSIRO Biosphere Model

The CBM was developed by CSIRO (Australia). It
uses a single-layer, two-leaf canopy model that consists
of two parts: 1) a radiation submodel that calculates the
photosynthetically active radiation, near-infrared radia-
tion, and thermal radiation absorbed by sunlit and
shaded leaves and 2) a coupled model of stomatal con-
ductance, photosynthesis, and partitioning of absorbed
net radiation into sensible and latent heat (Leuning
1995; Leuning et al. 1995, 1998; Wang and Leuning
1998). The soil component uses a six-layer structure to
compute heat conduction and Richards’ equation to
calculate moisture transport, and includes soil freeze
and thaw cycles. The snow model computes the tem-
perature, snow density and thickness of three snowpack
layers.

CBM took part in the PILPS C1 experiment (www.
pilpsc1.cnrs-gif.fr), which compared land surface model
performance using data collected at the Loobos, Neth-
erlands, pine forest site. CBM’s demonstrated compe-
tence in this experiment (results at www.pilpsc1.cnrs-
gif.fr) suggests that the results presented here should be
applicable to other models. When we speak of “the
model” in the experiments considered here, we mean
CBM.

5. The SOLO neural network

An ANN may be thought of as a mathematical func-
tion that, through an iterative process, adjusts its own
constants or parameters to fit a given set of data. Most
commonly, ANN operation is split into two phases, one
to train the ANN and one to test or use it for prediction.
This process, providing the ANN with a fixed set of
input/output pairs from which it establishes the desired
functional relationships, is known as “supervised train-
ing.” Figure 1a represents the supervised training
phase, and Fig. 1b represents the testing phase.

For our purpose of modeling systematic trends in
model output error we chose the SOLO neural network
(Hsu et al. 2002). Our primary reason for doing so is
that the structure of the SOLO map ensures that only
systematic trends in training data are captured; there is
little risk of modeling noise in data, often an issue with
overtraining in feed-forward ANNs. We will discuss
this and other reasons for our choice in more detail
after we have outlined the SOLO map’s structure and
operation. The description below follows from Hsu et
al. (2002).

The SOLO map consists of three layers, shown in
Fig. 3: an input layer, an input classification layer, and
a regression or output layer. The input layer, given
n0 input variables (such as air temperature or wind
speed), consists of n0 
 1 nodes. The unit input that
forms the extra node is used only in the regression
stage of operation. Both the classification layer and
output layer are square matrices of n1 � n1 nodes. Join-
ing the ith nonunit input node to the jth classification
layer node is the weight wji, for all i � 1, . . . , n0 and

FIG. 3. The three-layer structure of the SOLO neural network. The input layer, classification layer, and weights
wji together form a SOFM, while the output layer performs a node-by-node multiple linear regression with
parameters �ji. The input variables {x1, . . . , xn0

} (e.g., air temperature and wind speed) are normalized, in this case
using their maximum possible ranges. After Hsu et al. (2002).
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j � 1, . . . , n1 � n1. These weights, wji, together with the
input and classification layers form a Self Organizing
Feature Map (SOFM) (Kohonen 1989), which operates
in the following way.

We wish to classify a set of input data into groups,
where each group is represented by a classification
layer node. These data are a collection of n0-dimen-
sional vectors, with each member of the collection rep-
resenting an observation/model time step (though not
necessarily chronologically ordered—see section 6). To
do this, we first normalize each input variable (here we
use the range of possible values for each variable, as
described in section 6). We then define the distance, dj,
between a given input vector x � (x1, . . . , xn0

) and the
jth classification layer node to be

dj � �	
i�1

n0

�xi � wji�
2�1�2. �6�

Each input vector x belongs to the group or node to
which its distance is shortest. We refer to the node, c,
for which dc � min(dj) for all j � 1, . . . , n1 � n1 as the
winner node for x. Training the SOFM is then a matter
of choosing the wji to spread the input data amongst the
classification layer nodes.

To begin, the weights wji are randomly initialized.
Then, for a given input vector x, we adjust all the clas-
sification layer nodes within a (square) neighborhood,
�c, of the winner node for x:

wji � �wji 
 ��xj � wji� if j ∈ 	c

wji otherwise.

In this equation, � is the learning rate or size of adjust-
ment. If � � 1, all the nodes in �c will have a zero
distance from x; if � � 0 the distances remain un-
changed. We first adjust the wji for all vectors in the
training set using a large value of 0 � � � 1 and large
neighborhood size � and then repeat the process many
times with � and � reduced progressively. As training
progresses, nodes in the classification layer will become
associated with data-rich regions of the input space
(Hsu et al. 2002). This ensures that if the data occupy
only a small proportion of the range by which they’ve
been normalized, they are still well spread amongst the
classification layer nodes. Weight adjustment ceases
when the distribution of input vectors amongst the clas-
sification layer nodes stabilizes.

At this point, with SOFM training complete and all
input vectors associated with nodes of the classification
layer, a direct link is made between the jth node of the
classification layer and jth node of the output/regres-
sion layer (see Fig. 3). By this, we mean each node in
the regression layer is associated with the subset of the

input data belonging to the jth classification layer node.
A linear regression is then performed between this
subset of the input data and its associated output data
(remembering for this training period we provided
the SOLO map with a set of input–output pairs). The
weights between each input layer node (including
the unit input node) and the jth regression layer node,
{�ji|i � 0, . . . n0}, are the parameters of this regression
(see Fig. 3).

Once such regression parameters have been estab-
lished, so that we have now trained the weights �ji as
well as wji, the SOLO map training is complete. Given
an input vector x � (x1, . . . , xn0

) with winner node c in
the classification layer, the output from a trained
SOLO network will be

z � �	
i�1

n0


jixi 
 
j0 for j � c

� otherwise.

�7�

Here, Ø implies that no calculation is performed, so
that only one of the regression matrix nodes, the winner
node for x, gives an output. We can also see that the
input layer unit node provides us with the constant term
in the regression.

Finding the regression parameters, �ji, however, is
not trivial. For a given node in the regression layer, let
the number of input–output pairs supplied by SOFM
training be p. We then need to solve a set of linear
equations for � � (�j0, �j1, . . . , �jn0

),

Z � X� 
 , �8�

where � is a p � 1 vector of estimation errors with zero
mean, Z is the p � 1 vector of p output data for training,
and X is a p � (n0 
 1) matrix containing p rows of
n0-variable training data. This in turn requires us to
solve the normal equations (see derivation in appen-
dix A),

XTX� � XTZ. �9�

Ideally, we would then simply solve � � (XTX)�1XTZ
to find the regression parameters. However, it is not
always the case that XTX is invertible; there may be
significant correlation between the input variables xi.
This issue is dealt with by recasting Eq. (8) in terms of
the principal components of X. Let Y be the p � (k 

1) matrix of the k � n0 principal components of X de-
fined by

Y � XC, �10�
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where C is the (n0 
 1) � k transformation matrix with
eigenvectors derived from the covariance matrix of X
satisfying CTC � CCT � I (see appendix B). We then
have

Z � X� 
  � YCT� 
  � Y� 
  �11�

and are now guaranteed that a solution to the principal
component analog to Eq. (9), � � (YTY)�1YTZ, exists,
since the variables in Y are orthogonal. By choosing
only a subset of the principal components of X, those
which explain the most variance, we simultaneously re-
duce instability in regression parameter estimation and
speed network training by reducing the dimension of
the matrices involved. For the work considered here,
we ensure that the above transformation preserves
most of the variance in X by keeping the ratio 	k

i�1�i /
	n0

i�1�i � 95% at each node.
The regression structure of the SOLO map ensures

no correction will be made if there is no systematic
trend in the model’s output error. In this case, the gra-
dient and intercept regression parameters for each
node will be zero. This makes it ideal for use as a bias
correction model. For the same reason, noise in obser-
vational data should not affect the input–output rela-
tionships established, provided we have enough data
for training. Additionally, the regression structure
eliminates the many potential problems encountered
with other ANNs that use error space search algorithms
to find optimal network parameters (e.g., problems
with local minima and overtraining). It is also compu-
tationally more efficient than either multilayer feed-
forward or recurrent neural networks (Hsu et al. 2002).
In the sections to follow, when we speak of “the ANN”
we mean the SOLO map, and by SOFM “resolution”
we mean the number of nodes, n2

1, in the SOFM.

6. Experimental setup

To demonstrate the NERD process, we make a cor-
rection to CBM’s simulation output at the two obser-
vational sites described in section 3. In both cases we
correct only a single model output flux, although it
should be clear that extending the SOLO map archi-
tecture to deal with several outputs is relatively simple.
The processes of training and testing the ANN, de-
scribed below, are shown schematically in Figs. 1a and
1b, respectively.

a. Case 1: Latent heat correction at Cabauw

For the first case, we perform a correction to the
predictions of latent heat flux by CBM using the
Cabauw data. The first step in this process is to select

the parameter set or sets required to run CBM. In sec-
tion 2a, we discussed the benefits of using a finite col-
lection of points from the pareto set for this purpose, to
characterize model systematic error in a parameter-
independent way. In this case, we perform a multiple-
criteria calibration using all 17 520 time steps of the
Cabauw data, using rmse in latent and sensible heat flux
as the two objective function criteria. From the result-
ing pareto set, we select five representative parameter
sets: one at each of the calibration criterion’s minima,
and three others evenly spaced between these (Fig. 2).
By “evenly spaced” we mean rmse distance defined in
the following way: if � and � are the two points in the
parameter space where f1 and f2, the two criteria func-
tions, have minima, then the point, �, in the pareto set
with rmse closest to

� f1���, f2���� � �f1��� 
 f1���

2
,
f2��� 
 f2���

2 �
�12�

is the midpoint between � and � (see Fig. 2).
In addition to these five parameter sets, we use two

default parameter sets for reference purposes. One of
these was provided by Beljaars and Bosveld (1997) for
the PILPS phase 2a experiment (Chen et al. 1997); the
other was our choice of default parameters for Cabauw,
using generic vegetation and soil type.

To demonstrate the processes involved in using these
seven parameter sets we first consider the simplest con-
figuration. CBM is run with a single default parameter
set for the entire year of Cabauw forcing data. We then
have 17 520 time steps of model output, observations of
latent heat flux (provided with the Cabauw meteoro-
logical forcing), and meteorological forcing. Alternate
time steps are allocated to training and testing sets,
giving two 8760 time step sets.

During both the training and testing phases for this
experiment, input variables to the ANN are observed
downward shortwave radiation (S), air temperature
(T), specific humidity (Q), and wind speed (W) to-
gether with modeled latent heat flux (L) and top layer
soil moisture content (M). For training, output is sim-
ply latent heat flux error (L), as defined in Eq. (2),
while for testing, output is the ANN simulation of this
error. These input variables were chosen based on
physical reasoning as well as an analysis of the correla-
tion between model inputs and latent heat residual.
Table 2 suggests there are significant relationships be-
tween the six inputs chosen and latent heat error. The
training and testing sets therefore, are a series of 8760
input–output pairs:
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err
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Using the nomenclature of section 5, we have input
vectors xk � (x1k, . . . , xn0

k) � (Sobs
k , Tobs

k , Qobs
k , Wobs

k ,
Lmod

k , Mmod
k ) and output vectors zk � Lerr

k . For this
experiment, the order of elements in the set of train-
ing pairs {(xk, zk), k � 1, 8760} is not important since
all variables are for an individual model time step;
each member is treated independently. This means
we do not necessarily need continuous data, although
in this case the data are continuous. To use the SOFM
in the SOLO ANN, the inputs need to be normalized,
and for this we use the ranges prescribed by the ALMA
convention (http://www.lmd.jussieu.fr/˜polcher/ALMA/
convention_3.html). These ranges are the theoretical
global limits for each variable.

This configuration is used for CBM runs with each of
the five parameter sets chosen from the pareto set and
the two default parameter sets, leaving us with seven
trained ANNs and seven respective testing sets.

The second configuration examines the systematic
trends in CBM’s error in a parameter independent way
by using the same ANN inputs and output as men-
tioned above but utilizing all five pareto point runs.
That is, 5 � 17 520/2 � 43 800 input–output pairs are
provided for ANN training, and 43 800 provided for
testing. In terms of the matrix in Eq. (13) above, this
simply involves increasing the length of each column by
a factor of 5.

For each of the seven model runs used in these eight
experiments, a 5-yr spinup period was used to remove
sensitivity to initial state values. To be certain of its
success, five initial state value sets were used for all
model runs with each of the seven parameter sets.
These state sets had soil moisture values ranging from
wilting point to above soil saturation as well as soil
temperature values ranging from 0° to 20°C. In every

case, after the 5-yr spinup period, variation in rmse in
latent heat amongst runs with a fixed parameter set but
different initial state values was three orders of magni-
tude less than the variation between runs with different
parameter sets.

b. Case 2: Carbon correction at Harvard Forest in
dynamic conditions

We demonstrate the broad applicability of the
NERD process by making a correction to carbon fluxes
at a different site. The experimental setup is similar to
the first case, but is additionally designed to explore the
validity, in a dynamic environment, of the statistical
correction. We stress that we are primarily using the
NERD methodology as a tool to identify systematic
model weakness, but the question of how fundamental
this weakness is, relative to changes in climate system
behavior, remains open. To investigate this question,
the 8 yr of Harvard Forest data described in section 3
are used to make a correction to net ecosystem ex-
change (NEE) predictions. The first 4 yr of data are
used both to select parameter values and train the
ANN. The second 4 yr are used to test the relationships
so established.

In selecting parameter sets in this case, we perform a
three criteria calibration, using rmse latent heat, sen-
sible heat, and NEE on the first 4 yr of Harvard Forest
data. From the pareto set obtained we make use of four
parameter sets: the three which minimize each of the
criteria as well as one “compromise” point, �, defined
as follows. If �, �, and � are the three points in the
parameter space which minimize the three criteria f1, f2,
and f3 respectively, then define � as the point with rmse,
[ f1(�), f2(�), f3(�)], closest to

�f1��� 
 min�f1���,f1����

2
,
f2��� 
 min�f2���, f2����

2
,
f3��� 
 min�f3���, f3����

2 �. �14�

We again include a default model run using generic
vegetation and soil type parameter values.

Inputs to the ANN in this case are (observed) down-

ward shortwave radiation, surface air temperature, and
leaf area index together with (modeled) latent heat
flux, top layer soil temperature, and net ecosystem ex-
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change. Output is error in NEE. We again make a cor-
rection on a per-time-step basis.

7. Results

We first address the existence of systematic model
error. (The dotted lines in Figs. 7 and 8 show the aver-
age daily and monthly values of the two fluxes pre-
dicted by CBM at the two sites; the solid lines represent
observations.) March, July, and November were chosen
as evenly separated months that include the middle of
the Northern Hemisphere summer. Results in both fig-
ures are an average of the ensemble of all pareto point
runs (and testing years in the Harvard Forest case). We
can see that CBM consistently underrepresents latent
heat flux at Cabauw. Harvard Forest NEE was also
underpredicted during the winter months, with CBM
predicting virtually no net emission of CO2. Had we any
doubt, it should now be clear that the model has a
detectable systematic bias.

Each of the eight experiments outlined in case 1 of
section 6 using Cabauw data are represented by a line
in Fig. 4. This plot shows the per-time-step rmse of
model simulations corrected by the ANN for a range of
self-organizing feature map (classification layer) reso-
lutions. The x axis represents the SOFM edge length,
n1, as shown in Fig. 3, and the rmse value at zero reso-
lution is simply the rmse of the uncorrected model run.
No attempt has been made here to distinguish between

runs generated by the two default parameter sets
(dashed) or runs generated by the five individual pareto
set runs (dotted), rather we consider them as two be-
havioral groups. The solid line represents the perfor-
mance of the ANN trained on the ensemble pareto set
runs.

From this figure we see that a correction made by the
ANN using a SOFM with edge length 32 (implying a 32
� 32 � 1024 node SOFM) that has been trained and
tested on all five pareto set runs can decrease the simu-
lation rmse for latent heat from 27.5 to 18.6 W m�2

(32%). If we look at the y axis or zero-resolution line
(enlargement in Fig. 4) we see how effective parameter
calibration is in this case. The difference between the
worst-performing default parameter set and the best-
performing noninferior parameter set is around 1.74 W
m�2, or about 6%. From the best-performing default to
the worst-performing noninferior point is 0.44 W m�2,
or around 1.5%. Even a single unit SOFM (“1” on the
x axis in Fig. 4) gives a 7% improvement in the rmse.
That is, making a linear correction to the latent heat
flux of CBM at Cabauw based on the six ANN inputs
gives a correction of a similar size to parameter calibra-
tion.

The analogous plot for CO2 flux correction at Har-
vard Forest shows a similar trend (Fig. 5). It represents
the per-time-step rmse performance of NEE prediction
by CBM for the 4-yr testing period (1996–99) for a
range of ANN complexity. The best-performing correc-

FIG. 4. Rmse of corrected model simulation vs the size of the self-organizing feature map
used to make the correction for latent heat correction at Cabauw. Dotted lines represent
ANNs trained and tested on model output generated using a single pareto point, dashed lines
use a single default parameter set, and the solid line uses an ensemble of model runs using all
five pareto points. Zero edge length (the y axis) is the uncorrected model simulation.
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tion came from the ANN trained and tested on the
default parameter set, a 122 node SOFM reducing the
per-time-step rmse from 3.71 to 2.70 �mol m�2 s�1

(27%). The all-pareto point experiment resulted in a
drop from 3.55 to 2.88 �mol m�2 s�1 (18%).

Parameter calibration in this case reduced NEE per-
time-step rmse from 3.71 to 3.36 �mol m�2 s�1 (9%) for
the NEE minimum in the pareto set. The sensible heat
minimum in the pareto set resulted in a marginally
higher per-time-step rmse than that resulting from the
default parameter set.

It appears that the nature of model systematic error
in latent heat flux at Cabauw is not wholly parameter
dependent. In Fig. 4, the all-pareto point experiment
(which used five model runs) performed better than any
of the single pareto point experiments, suggesting there
is information about model weakness using one param-
eter set when running the model with another. The
nature of the model’s systematic error was therefore
best generalized by the ANN trained using multiple
parameter sets. This was not the case for the carbon
correction at Harvard Forest, however. The reason for
this is most likely that calibration process that gener-
ated the Harvard Forest pareto set used three criteria,
instead of the two used at Cabauw. The result was a
larger pareto set and consequently a larger range of
model behavior for the ANN to capture.

For further analysis, unless otherwise stated, we use
results from all-pareto trained ANNs. In the Cabauw

case, we use a 322 node SOFM, trained and tested on
the five pareto point model runs and for Harvard For-
est, a 122 node SOFM trained and tested on the four
pareto point model runs.

We now consider rmse on longer time scales. Figures
6a and 6b show rmse for a range of averaging window
sizes. Half-day averages to 20-day averages are plotted
for Cabauw and up to 40-day averages for Harvard
Forest. Results are shown for all-pareto-point model
(solid) and corrected model (dashed) runs as well as
default model (dash–dot) and corrected model (dotted)
runs. This gives us an indication of the relative effec-
tiveness of parameter estimation and the NERD cor-
rection. If we dispense with parameter estimation alto-
gether and simply implement NERD using default pa-
rameter sets only, results in the Cabauw case are only
marginally worse and the Harvard Forest case, signifi-
cantly better. A summary of the improvements is
shown in Table 1, which suggests reductions in rmse are
achieved both by increasing averaging time and apply-
ing the NERD correction. Note that the relative size of
the NERD correction increases with increasing averag-
ing time. While daily carbon flux rmse is reduced by
53% in the default simulations, dropping from 2.66 to
1.25 �mol m�2 s�1, the annual reduction is 95%, a drop
from 2.24 to 0.11 �mol m�2 s�1.

The remainder of Fig. 6 represents the results of scat-
terplots of modeled versus observed values for both
fluxes. Ideally, we want a unit gradient and zero offset
for the least squares linear regression lines for such
plots, regardless of whether we consider a scatter based
on per-time-step, daily, weekly, or monthly averages.
The gradient of such regression lines (Figs. 6c,d) as well
as the square of the correlation coefficient, r2 (Figs.
6e,f), are shown for a range of averaging window sizes
at both sites. The solid line represents the gradient of
model versus observed, and the dashed line represents
corrected model versus observed. The shaded gray re-
gions surrounding each line represent the 95% confi-
dence intervals on the gradient estimates, which natu-
rally broaden as we consider longer-term averages and
the sample size shrinks.

The most striking result here is the correction of
simulated CO2 at Harvard Forest. While the gradient of
model simulation versus observation converges to a
value around 0.7 (with increasing size of averaging win-
dow), the corrected simulation is unbiased at 10-day or
greater averages (where the 95% confidence interval
includes the unit gradient). Correlation between ob-
served and modeled CO2 at Harvard Forest was also
significantly improved by the correction. The Cabauw
case was not so dramatic. While observed–modeled
correlation was clearly bettered at all time scales by the

FIG. 5. Rmse of corrected model simulation vs the size of the
self-organizing feature map used to make the correction for NEE
correction at Harvard Forest. Dotted lines represent ANNs
trained and tested on model output generated using a single
pareto point, dashed lines use a single default parameter set, and
the solid line uses an ensemble of model runs using all five pareto
points. Zero edge length (the y axis) is the uncorrected model
simulation.
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correction, the corrected model versus observed re-
gression gradient was only better for 8-day averages or
less.

We now briefly look at the impact of the corrections
on the diurnal and annual cycles of the two fluxes. Fig-

ure 7 shows the ensemble average day for three sepa-
rate months during the simulation at both sites. Figure
8 shows average monthly flux values at both sites. The
model underestimated the latent heat flux at Cabauw
during each month and significantly so in March, while

FIG. 6. (a), (b) Root-mean-square error; (c), (d) gradient of least squares regression of model and corrected model vs observed; and
(e), (f) Pearson correlation coefficient, r2, for latent heat at Cabauw and net ecosystem carbon exchange at Harvard Forest. The x axis
represents the window averaging size; the shaded area around the lines represents the 95% confidence interval on the gradient
estimates. Results are shown for ensemble model runs using pareto parameter sets; (a) and (b) additionally include default parameter
set results.
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the application of the NERD process removed almost
all of this bias (Fig. 7). A similar result was obtained for
NEE at Harvard Forest, with NERD able to remove
both positive and negative biases in model predictions.
Systematic errors in modeled monthly mean latent heat
fluxes were largely eliminated by NERD at Cabauw
(Fig. 8), but the correction led to a systematic positive
bias in NEE at Harvard Forest, in contrast to the nega-
tive biases in winter and autumn from the model alone.

8. Discussion

The results in section 7 demonstrated that the NERD
process led to significant improvements in model per-
formance at all time scales for most of the measures we
considered. The ANN successfully identified and cor-
rected systematic bias in model output for calibrated
and default parameter sets.

Reasons for choosing one parameter set over another
when making a NERD correction are not yet clear. In
the Cabauw case, gains made by parameter calibration
were preserved by the NERD correction; the separa-
tion of model performance using default parameter val-
ues versus pareto parameter values remained intact re-
gardless of SOFM resolution in the correcting ANN
(Fig. 4). At Harvard Forest, however, the default pa-
rameter set, which had considerably higher rmse for
uncorrected model runs, consistently outperformed any
of the pareto point model runs once the ANN correc-
tion was applied (Fig. 5). The use of multiple pareto
parameter sets effectively gave several times as much
training data with which to generalize the model’s sys-

tematic error, which at Cabauw resulted in the superior
performance of the all-pareto correction. This again
was not true at Harvard Forest. A possible resolution of
this issue could be the use of an all-pareto ANN that
additionally includes selected model parameters as in-
puts.

We now consider possible improvements to the tech-
nique. Table 2 shows the Pearson correlation coeffi-
cient (r) between ANN inputs and model error before
and after ANN correction. It also shows the “P value,”
a measure designed to gauge the significance of the
correlation. It represents the probability of getting the
given correlation by random chance, with the hypoth-
esis of no correlation. Traditionally 5% (0.05) or less is
deemed significant, implying the hypothesis is false. A
zero P value here implies a value less than 10�100. Table
2 suggests that although the ANN has significantly re-
duced systematic error, it has by no means done a com-
prehensive job. At Cabauw, the ANN largely removed
the significant correlations between the pairwise error
in latent heat fluxes and air temperature, humidity, and
modeled latent heat flux, but the relatively minor de-
crease in the pairwise correlation of the other three
inputs and latent heat error show that the ANN did not
adequately capture this dependence. This problem is
even clearer at Harvard Forest, where even after cor-
rection all ANN input–output P values were less than
10�10. This suggests that the improvements made by
NERD correction could be better.

A possible reason for this problem is what we might
call dimension resolution in the SOFM. If we set all
ANN input variables to be constant except one, say
temperature, what does the temperature-output rela-
tionship look like? That is, since we are considering a
piecewise linear approximation of the input–output re-
lationship, how many linear “pieces” are used to re-
solve the temperature dimension? If we consider a
simple 2 � 2 SOFM with only two input variables, x1

and x2, for any fixed value of x1, we cannot expect an
x2-output graph to be any more complex than a two-
piece linear approximation. This leads us to define a
dimension resolution number, k, such that if our ANN
has n0 input variables and n2

1 SOFM nodes,

k � �n1
2�1�n0.

In the Cabauw case, k � (1024)1/6 �� 3.2, and for Har-
vard Forest k � (144)1/6 �� 2.3. To improve this situa-
tion we could use the principal components of the ANN
inputs instead of the inputs themselves, but that is not
explored in this paper.

One issue mentioned in section 2b that could com-
plicate results was model state drift. Ideally we would

TABLE 1. Daily, weekly, monthly, and annual decrease in rmse
for latent heat flux at Cabauw and NEE carbon flux at Harvard
Forest due to the NERD correction. Results are shown for the
correction utilizing all pareto-point runs (all) and default model
parameter set runs (def). Annual values for Cabauw are omitted
due the brevity of the dataset.

Cabauw latent heat rmse (W m�2)

Model
(all)

Model 

NERD (all)

Model
(def)

Model 

NERD (def)

Daily 15.13 6.87 15.89 9.05
Weekly 11.75 4.23 13.30 5.63
Monthly 9.91 3.08 11.07 3.96

Harvard Forest NEE rmse (�mol m�2 s�1)

Model
(all)

Model 

NERD (all)

Model
(def)

Model 

NERD (def)

Daily 2.07 1.41 2.66 1.25
Weekly 1.83 1.06 2.48 0.86
Monthly 1.71 0.90 2.40 0.64
Annually 1.35 0.52 2.24 0.11
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like the ANN to learn only first-order model error,
without the complication of internal feedback mecha-
nisms. That is, the state values of the previous time step
in Eq. (1) would ideally be observed states so that (for
the moment ignoring observational errors) the error
term defined in Eq. (2) would have no dependence on
the model’s behavior in previous time steps. If the
ANN were to be trained this way, however, during the
testing period it would have to make a correction to the
model states (which had been replaced by observations
during training). If it did not, we would expect model
states to again drift to equilibrium values, potentially a
very different environment from the one in which the
ANN was trained. The main limiting factor for such an
approach is the relatively limited amount of observed
state data. The issue was mitigated to some extent by
including model states as ANN inputs. Also, in both the
Cabauw and Harvard Forest cases described above, we
have some evidence to indicate that model states were
reasonably realistic. Top-layer soil temperature, the

only state variable available for both of the datasets,
was easily within 1 K of the observed value after spinup
in both cases.

Perhaps the most serious criticism of the NERD pro-
cess is that it is a statistical correction. One might well
ask, if we believe that an ANN is capable of appropri-
ately correcting the model, why not just use an ANN to
model the land surface and dispense with the physically
based model altogether? The answer is that we are
modeling a dynamic climate system (assuming that our
interest is long-term prognostic simulation). It is the
case, whether we make a correction or not, that the
model must incorporate enough of the natural system’s
physical processes that the mechanisms of climate
change are captured. Additionally, there is not yet
enough data to support a global statistical land surface
model. Deciding whether a statistical correction to a
physically based model is appropriate under dynamic
conditions is very difficult, since we do not know ex-
actly how dynamic the natural system actually is. We

FIG. 7. Average day fluxes for March, July, and November for (top) Cabauw latent heat flux and (bottom)
Harvard Forest net ecosystem carbon flux. Corrections were made using a 322 node SOFM for Cabauw and a 122

node SOFM for Harvard Forest. Results are an average of an ensemble of pareto set model runs.
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must decide whether the anticipated modes of climate
behavior are significantly different from those that
were used to develop the statistical technique. That is,
whether we have data today that includes the physical
processes of climate in the future. Resolving these is-
sues will take time and a great deal of high quality
observational data, and the answer will probably be

temporally and spatially dependent. They apply both to
the NERD process and to parameter estimation, which
has been performed using a short period of single-site
observations to choose parameters for entire regions
for long-term simulations (Sen et al. 2001). In the Har-
vard Forest case presented here however, since both
parameter estimation and ANN training were per-

TABLE 2. Correlation between model residual and each of the variables selected as ANN inputs. Values of the square root of the
Pearson correlation coefficient, r, as well P values (significance of the correlation) are shown for model runs before (“model”) and after
(“corr”) NERD correction. Here P values less than 0.05 suggest significant correlation. Zero implies a value less than 10�100. All
pareto-point trained and tested ANNs were used with 322 and 122 node SOFMs for Cabauw latent heat flux and Harvard Forest CO2

flux, respectively.

Cabauw latent heat correction

SW down T air Q air Wind Modeled LH Modeled SM

Model r �0.053 �0.012 0.023 0.206 �0.212 �0.042
Corr r 0.028 �0.003 0.008 0.041 �0.004 �0.040
Model P value 1.2 � 10�28 0.010 9.5 � 10�7 0 0 1.0 � 10�18

Corr P value 3.1 � 10�9 0.570 0.093 1.0 � 10�17 0.460 1.2 � 10�16

Harvard Forest net ecosystem exchange correction

SW down T air LAI Modeled LH Modeled ST Modeled NEE

Model r �0.103 �0.125 �0.181 �0.106 �0.156 0.050
Corr r �0.041 0.029 0.053 0.020 0.034 �0.037
Model P value 0 0 0 0 0 3.1 � 10�79

Corr P value 7.1 � 10�53 1.9 � 10�27 5.2 � 10�86 1.3 � 10�13 2.8 � 10�36 2.3 � 10�44

FIG. 8. Average monthly values for Harvard Forest net ecosystem carbon flux and Cabauw
latent heat flux. Corrections were made using a 322 node SOFM for Cabauw and a 122 node
SOFM for Harvard Forest. Results are an average of an ensemble of pareto set model runs.
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formed using 1992–95 data and the results used 1996–99
data, both processes seem appropriate.

This paper is intended as a simple demonstration of
the ability of the NERD technique to capture (but not
yet reveal) the nature of model error emanating from
parameterization problems in the model. Future work
will use NERD to identify weaker areas of model pa-
rameterization. Additionally, the statistical correction
presented here will be extended to regional or global
scales by including model parameters as inputs to the
ANN as a mechanism for distinguishing between sites.

9. Conclusions

In this paper we have demonstrated the ability of the
NERD process to remove a significant proportion of
model error. That is, we have shown that an appropri-
ately chosen artificial neural network can successfully
identify and correct systematic trends in model output
at different sites, for different variables, across a broad
range of time scales. The magnitude of the correction in
all cases presented here was considerably larger than
that afforded by parameter calibration. For latent heat
flux at the Cabauw site, the NERD process reduced
per-time-step rmse from 27.5 to 18.6 W m�2 (32%) and
monthly rmse from 9.91 to 3.08 W m�2 (68%). Net
ecosystem carbon exchange (NEE) rmse at the Har-
vard Forest site was reduced from 3.71 to 2.70 �mol
m�2 s�1 (27%) on a per-time-step basis and 2.24 to 0.11
�mol m�2 s�1 (95%) on annual time scales. This clearly
shows that systematic error in model output does in-
deed exist.

We have also ensured that the gains made by the
NERD correction compensate for inadequacies in
model parameterization rather than problems resulting
from inappropriate parameter values. The NERD tool
was applied using model parameter sets that minimized
error in latent heat, sensible heat, and net ecosystem
carbon exchange both independently and simulta-
neously, as well as with default parameter sets.

This suggests that data quality is not a major limita-
tion on the validation and development of land surface
models. Indeed the use of observational data purely for
parameter estimation at least in this case appears to be
an underutilization of important information on model
misbehavior, which the observational data contain. The
NERD technique also dramatically enhances the
breadth of data available for testing and improving land
surface models since it does not require continuous ob-
servational data. Even single measurements of appro-
priate variables can contribute to neural network train-
ing or testing. It should be noted, however, that the
work presented here represents a small sample size. It

only made use of a single model and two observational
sites.
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APPENDIX A

Finding the Regression Parameters

We wish to find the regression parameters, �ji, dis-
cussed in section 5. For a given node in the regression
layer, let the number of input–output pairs supplied by
SOFM training be p. We then need to solve a set of
linear equations for � � (�j0, �j1, . . . , �jn0

),

Z � X� 
 , �A1�

where � is a p � 1 vector of estimation errors with zero
mean, Z is the p � 1 vector of p output data for training
and X is a p � (n0 
 1) matrix containing p rows of
n0-variable training data:

X ��
1 x1,1 . . . x1,n0

1 x2,1 . . . x2,n0

·
·
·

·
·
·

·
·
·

1 xp,1 . . . xp,n0

� .

The column of ones in the matrix X is from the unit
node in the input layer, and once multiplied by the �j0

parameter, as suggested before, will form the constant
term in the regression.

To minimize the error sum of squares, �T�, consider
the vector Z as a sum of the vectors X� and � in a
p-dimensional Euclidean space, as in Eq. (A1) and Fig.
A1. The columns of X, also p-dimensional vectors, span
the estimation space, so that the product

X� � �1, x1, · · ·, xn0
��


j0


j1

·
·
·


jn0

�
� 
j0 
 
j1x1 
 · · · 
 
jn0

xn0

can define any vector in the estimation space for ap-
propriate values of the �ji. From Fig. A1a it should be
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clear that minimizing the error sum of squares �T� � (Z
� X�)T(Z � X�) is equivalent to minimizing the length
of Z � X�. It should also be clear that the shortest
distance from the point Z to the estimation space is the
perpendicular distance, so that choosing X� to be the
projection of Z onto the estimation space will minimize
� � Z � X� (Fig. A1b). That is, the dot product of � and
every vector in the estimation space will be zero. Since
the columns of X � [1, x1, · · · , xn0

] span the estimation
space, for any � ∈ �n0 
 1

�X��T � �TXT

� �TXT�Z � X��

� �T�XTZ � XTX��
� 0. �A2�

Since Eq. (A2) must be true for any value of �, the
normal equations

XTX� � XTZ

must hold.

APPENDIX B

Principal Components

We wish to find a solution to XTX� � XTZ in the case
that (XTX)�1 is not invertible because of collinearity
between the n0 variables (columns) of X. To do this,
we consider the principal component transformation of
X � [1, x1, · · · , xn0

], which will essentially remove the
collinearity between the variables and express the data
in terms of a coordinate system with perpendicular
axes.

Since the covariance matrix of X, � � E (XTX), is
symmetric, it is orthogonally diagonalizable, so that

	 ��
�1 0 . . . 0

0 �1 . . . 0
·
·
·

·
·
·

···
·
·
·

0 0 . . . �n0

�
� CT	C

� CTE�XTX�C

� E�CTXTXC�. �B1�

This suggests that the transformation of X

Y � XC �B2�

provides the change of coordinates we require, since
the covariance matrix of Y, E(YTY) � E(CTXTXC) � �,
is diagonal. That is, the covariance between any two
variables (columns) in Y is zero, and the variance of
each of these variables is given by the set of eigenvalues
(�1, . . . , �n0

).
We can also see that the transformation has pre-

served the total variance of X:

trace�	� � trace�C�CT� � trace��� � 	
i�1

n0

�i.

�B3�

The principal components of X, Y are ordered by vari-
ance, so that �1 � · · · � �n0

. By reducing the number of
principal components to k � n0 while still requiring that

		
i�1

k

�i
	
i�1

n0

�i� � 100% � 95%, �B4�

we ensure stable regression parameters at each SOLO
node. Using this transformation, we have

Z � X� 
  � YCT� 
  � Y� 
 , �B5�

FIG. A1. The decomposition Z � X� 
 �, where span{1, x1, . . . , xn0
} is termed the estimation space in (a) the

general case and (b) the case where the choice of � minimizes the length of � � Z � X�.
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which, using the result from appendix A, requires us to
solve (YTY)� � YTZ. This time, however, we have en-
sured that the columns of Y, the principal components
of X, are orthogonal, so that

��YTY��1YTZ. �B6�

Our original regression parameters can then be recov-
ered:

� � C� � C�YTY��1YTZ � C��1CTXTZ

� 	
i�1

k

�i
� 1eiei

TXTZ, �B7�

where ei is the eigenvector of 	 with the ith largest
eigenvalue.
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