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[1] Two elementary issues in contemporary Earth system science and engineering are
(1) the specification of model parameter values which characterize a system and (2) the
estimation of state variables which express the system dynamic. This paper explores a
novel sequential hydrologic data assimilation approach for estimating model parameters
and state variables using particle filters (PFs). PFs have their origin in Bayesian
estimation. Methods for batch calibration, despite major recent advances, appear to lack
the flexibility required to treat uncertainties in the current system as new information is
received. Methods based on sequential Bayesian estimation seem better able to take
advantage of the temporal organization and structure of information, so that better
compliance of the model output with observations can be achieved. Such methods provide
platforms for improved uncertainty assessment and estimation of hydrologic model
components, by providing more complete and accurate representations of the forecast and
analysis probability distributions. This paper introduces particle filtering as a sequential
Bayesian filtering having features that represent the full probability distribution of
predictive uncertainties. Particle filters have, so far, generally been used to recursively
estimate the posterior distribution of the model state; this paper investigates their
applicability to the approximation of the posterior distribution of parameters. The
capability and usefulness of particle filters for adaptive inference of the joint posterior
distribution of the parameters and state variables are illustrated via two case studies using a
parsimonious conceptual hydrologic model.
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1. Introduction and Scope

[2] Hydrologic models, from the simplest to the most
complex, are often used to predict the future evolution of
variables of interest based on modeled estimates of the
current states and parameters of the system. However, a
long-standing problem in hydrology has been how to
retrieve estimates of system states and parameters for a
given domain (e.g., land surface) using measurements
made on system fluxes and other quantities. The hydro-
logic system involves complex interactions among the
atmospheric, land surface, and subsurface components of
the water cycle. Hydrologic models typically conceptualize
and represent these complex behaviors using relatively
simple mathematical equations in which the (conceptual-
ized) model parameters are aggregate quantities represent-

ing spatial and temporal properties of the system and are
generally not directly and easily measurable in the field;
they must therefore be inferred by indirect methods such
as model calibration [Gupta et al., 1998]. A variety of
model calibration techniques have been developed to
ensure consistency between the model simulations of
system behavior and their corresponding observations
(see Duan et al. [2003] for a comprehensive review).
The most elementary approach, manual calibration, is
performed by visual inspection of the agreement and
differences between model predictions and the observa-
tions for some historical period of record, with analysis of
the differences used to guide trial-and-error adjustments of
the model parameters [Boyle et al., 2000; Gupta et al.,
2003a]. The subjectivity and time-consuming nature of
manual model calibration has motivated the development
of automatic calibration techniques [Sorooshian and
Dracup, 1980; Duan et al., 1992; Beven and Binley, 1992;
Sorooshian et al., 1993; Gupta et al., 1998]. However,
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despite major progress, automated calibration techniques
still lack the capability to properly treat the various
uncertainties inherent in the system. Studies using a
number of interesting methods, rooted in both classical
Bayesian estimation and the more contemporary multi-
criteria approach, have shown how they can be used to
quantify the inability of the model to generate precise and
accurate forecasts that properly reflect model parameter
and predictive uncertainty [Kuczera, 1983; Beven and
Binley, 1992; Kuczera and Parent, 1998; Yapo et al.,
1998; Gupta et al., 1998; Boyle et al., 2000; Kavetski et
al., 2003; Vrugt et al., 2003]. Such methods typically rely
on one or more aggregate statistical measures to measure
and minimize the long-term prediction error over some
historical period of calibration and validation data, by
implicitly (or explicitly) assuming time-invariance of the
parameters. Major weaknesses of such ‘‘batch’’ calibration
procedures include (1) the requirement that a set of
historical data be collected and maintained in storage to
be processed en masse results in computational burden,
(2) batch processing of data diminishes flexibility and
complicates the investigation of possible temporal varia-
tions in the model parameters, and (3) in the case of
insufficient availability of historical data (e.g., ungauged
or recently gauged basins) batch methods cannot be
properly applied.
[3] Considering that initial conditions such as water and

heat storages cause the memory effect in the hydrologic
system, sequential data assimilation can improve hydro-
logic predictability by taking the best advantage of
information content. Several authors have suggested the
need to adopt sequential estimation methods to strengthen
model calibration by improving the assimilation of infor-
mation from observations. Sequential techniques reported
in the hydrologic literature include the dynamic identifi-
ability analysis (DYNIA) for recursive evaluation of the
identifiability and time variability of parameters [Wagener
et al., 2003], data-based mechanistic modeling involving
recursive estimation of time-varying parameters [Young,
2001], the parameter estimation method based on the
localization of information (PIMLI) approach of Vrugt et
al. [2002], and Bayesian recursive estimation (BaRE) for
estimating parameter and predictive uncertainty for con-
ceptual hydrologic models [Thiemann et al., 2001; Misirli
et al., 2003]. The BaRE algorithm employs a recursive
Bayesian scheme for investigating the conditional proba-
bility distribution (reported using 95% confidence bounds)
of interacting model parameters. The major problem with
the initial version of this algorithm [see Beven and Young,
2003; Gupta et al., 2003b] was its tendency to conver-
gence to a single point estimate, a drawback corrected by
Misirli [2003]. We refer to this phenomenon as degener-
acy (see section 3.2) and will discuss the important role
of resampling to avoid this problem. Other sequential
estimation strategies include the standard Kalman filter
algorithm applied to real time streamflow forecasting
[Todini et al., 1976; Kitanidis and Bras, 1980a, 1980b;
Bras and Restrepo-Posada, 1980; Bras and Rodriguez-
Iturbe, 1985; Awwad and Valdés, 1992; Awwad et al.,
1994; Young, 2002], recursive estimation of model param-
eters for water quality models [Beck, 1987], and the
ensemble Kalman filter (EnKF) for dual estimation of

states and parameters and also the predictive uncertainty
bounds in conceptual hydrologic models [Moradkhani et
al., 2005].
[4] While the various Kalman filter–based recursive

procedures are relatively simple to implement and have
nice properties, the evolution of the filter is governed by
its second-order characteristics and a linear correction
(updating) procedure. However, because the state variables
in stochastic-dynamic systems are modeled as random
variables, subject to unknown disturbances, the conditional
probability of the prediction will translate, deform, and
spread, and the shape of this distribution is difficult to
track for models having strongly nonlinear behavior. For
such cases, an accurate computation of prediction proba-
bilities requires the tracking of higher-order moments.
Recent developments in sequential Monte Carlo (SMC)
methods [Gordon et al., 1993; Fruhwirth-Schnatter, 1994;
Cargnoni et al., 1997; Liu and Chen, 1998; Doucet et al.,
2001; Pham, 2001; Arulampalam et al., 2002] now make
the application of such methods attainable for the uncer-
tainty assessment of hydrologic models. SMC methods,
also known as particle filters, have garnered considerable
attention among researchers in communication theory,
signal processing, and target tracking [Djurić et al.,
2003]. These methods allow for a relatively complete
representation of the posterior distribution so that system
nonlinearities can easily be handled and the statistical
characteristics of the distributions (e.g., mean, mode,
kurtosis, variance, etc.) can readily be computed. Perhaps
the earliest applications of Monte Carlo methods for
statistical inference are given by Handschin [1970], Akashi
and Kumamoto [1975], and Zaritskii et al. [1975], but the
formal particle filter approach was established by Gordon
et al. [1993] through the introduction of a novel resam-
pling technique.
[5] This paper is organized as follows. Section 2 dis-

cusses sequential Bayesian data assimilation in the context
of a simple state-space model formulation and describes
the formal methodology required for Bayesian filtering.
We discuss the intractability of the formal sequential
Bayesian approach in section 3 and present the Monte
Carlo procedure known as particle filtering, which uses
sequential importance sampling (SIS) and sampling im-
portance resampling (SIR). The improvement in the filter’s
performance due to resampling is illustrated using an
example. Although particle filters have generally been
applied to estimation of the dynamic states in a system,
we discuss their applicability to static state (parameter)
estimation. In previous work we have explored the same
problem using a dual EnKF approach [Moradkhani et al.,
2005], which tracks only the first two moments of the
distributions; the important difference here is that particle
filters use a full Bayesian updating (correction) scheme. In
section 4, two case studies demonstrating the performance
of the filter for hydrologic modeling (using a parsimonious
conceptual rainfall-runoff model) are presented. In the first
case, a synthetic study is used to demonstrate the capabil-
ity of a particle filter for estimating known parameter and
state posterior distributions. The second case applies the
particle filter to the real-world problem of assimilating
historical streamflow data for improving streamflow fore-
casts. Section 5 summarizes the methodology and dis-
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cusses possibilities for its improvement and application to
other hydrologic data assimilation problems.

2. Sequential Bayesian Data Assimilation

2.1. Limitations of the Procedures Rooted in
Kalman Filter

[6] For a linear stochastic-dynamical system, it is possi-
ble to derive an exact analytical expression for recursive
calculation of the posterior distribution of simulated var-
iables using the celebrated Kalman filter [Kalman, 1960].
Under certain conditions, the method can be extended to
the nonlinear case by linearizing the model around the
current estimate of the state vector, using the approach
known as the extended Kalman filter (EKF) [Jazwinski,
1970; Reichle et al., 2002a]. However, the major limitation
of Kalman filter and its extensions are their closure at the
second-order moments, implying that filter evolution is
uniquely determined by their second-order characteristics.
The EKF, in particular, has many well-known drawbacks,
including the high computational demand required for
propagation of the error covariance and the closure ap-
proximation arising from neglecting the higher-order deriv-
atives of the model; the EKF is therefore susceptible to
divergence and instability [Jazwinski, 1970; Bras and
Rodriguez-Iturbe, 1985; Gauthier et al., 1993; Miller et
al., 1994].
[7] The ensemble Kalman filter (EnKF) was introduced

by Evensen [1994] and clarified by Burgers et al. [1998]
and Van Leeuwen [1999] as a means of addressing the
above mentioned difficulties encountered in the nonlinear
filtering problem. The EnKF uses a Monte Carlo approach
to approximate the conditional second-order moments of
interest using a finite number of randomly generated
model trajectories but also has the aforementioned limi-
tations. To improve accuracy and stability, and to obtain
correct estimates of prediction uncertainty, it is important
to track the time evolution of the model by means of all
moment characteristics through a full probability density
function. This becomes possible when the sequential
Bayesian scheme is employed.

2.2. Generic State-Space Model

[8] Over the course of the past decade, Earth system
science data assimilation activities have rapidly increased,
attracting the attention of hydrologists seeking to exploit the
potential use of real-time observations for producing more
accurate hydrological forecasts [McLaughlin, 1995; Reichle
et al., 2002a, 2002b; McLaughlin, 2002; Young, 2002;
Troch et al., 2003]. Sequential data assimilation consists
of a process whereby the system state is recursively esti-
mated/corrected each time an observation becomes avail-
able. Consider the following generic dynamic state-space
formulation of a stochastic model:

xkþ1 ¼ f xk ; q; ukð Þ þ wkþ1 wkþ1 � N 0;Qkþ1ð Þ; ð1Þ

where xk 2 <Nx is an Nx-dimensional vector representing the
system state (for example, catchment soil moisture content)
at time tk. The nonlinear operator f: <Nx ! <Nx expresses
the system transition from time tk to tk+1 in response to the
model input vector (forcing data, uk, e.g., mean areal

precipitation). q represents the vector of time-invariant
model parameters, and wk+1 is viewed as a white noise
random sequence in the discrete-time domain with mean
zero and variance Qk+1.
[9] Suppose that a set of scalar observations is taken at

time tk+1 and we intend to assimilate the vector of observa-
tions into the model. The output variables of the model are
functions of both the model state variables and the param-
eters characterizing the model. The observation process in
general form can be written as

ykþ1 ¼ h xkþ1; qð Þ þ nkþ1 nkþ1 � N 0;Rkþ1ð Þ; ð2Þ

where yk+1 2 <Ny is an Ny-dimensional observation vector
(observation simulation, e.g., streamflow) as a function of
model parameters and forecasted state variables through the
nonlinear operator h: <Nx ! <Ny . Here nk+1 is the
observational white random noise with mean zero and
variance Rk+1. The noise terms of wk+1 and nk+1 are
generally assumed to be independent random vectors.

2.3. Sequential Bayesian Filtering Formalism

[10] Discrete dynamic state-space models lend them-
selves naturally to Bayesian analysis. In this setting, a
new inference is drawn at each time tk by assimilating
information from the available observations y1, . . ., yk. More
specifically, at time tk a sequential analysis may seek to
estimate past states x1, x2, . . ., xk	1 (smoothing), the current
state xk (filtering), or the next state xk+1 (forecast). Because
of its stochastic nature, xk is a random variable; hence all
pertinent information about x1, x2, . . ., xk given observations
up to time k can be extracted from the posterior distribution
p(x1:kjy1:k). Our current study seeks to estimate this distri-
bution recursively in time, with particular interest in the
marginal distribution, the so-called filtering posterior
p(xkjy1:k). Given the filtering posterior, one can easily
calculate the desired point (mode or mean) or interval
estimates of the system state and output. This is known as
the ‘‘Bayesian filtering problem’’ or ‘‘optimal filtering.’’
The state posterior distribution at time tk is given by Bayes’
theorem as

p x0:kþ1ð jy1:kþ1Þ ¼
p y1:kþ1ð jx0:kþ1Þp x0:kþ1ð Þ

p y1:kþ1ð Þ ; ð3Þ

where, p(y1:k+1jx0:k+1) is the likelihood, p(x0:k+1) is the prior,
and p(y1:k+1) is the normalization factor.
[11] It is straightforward to obtain the recursive form of

the posterior as follows:

p x0:kþ1ð jy1:kþ1Þ ¼
p ykþ1 x0:kþ1j jy1:kð Þp x0:kþ1jy1:kð Þ

p ykþ1ð jy1:kÞ
: ð4Þ

The conditional distribution at (4) summarizes all the
information available about the stochastic-dynamic system
represented by (1).
[12] The filtering posterior distribution p(xk+1jy1:k+1) can

also be written as

p xkþ1jy1:kþ1ð Þ ¼ p ykþ1ð jxkþ1Þp xkþ1jy1:kð Þ
p ykþ1ð jy1:kÞ

: ð5Þ
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Using the total probability, the forecast density p(xk+1jy1:k)
is obtained via the Chapman-Kolmogorov equation

p xkþ1jy1:kð Þ ¼
Z
xk

p xkþ1ð jxk ; y1:kÞp xk jy1:kð Þdxk : ð6Þ

Given the Markovian property of order one in equation (1),
that is, system state at each time step is just dependent on
the previous state, the forecast density simplifies to

p xkþ1jy1:kð Þ ¼
Z
xk

p xkþ1jxkð Þp xk jy1:kð Þdxk : ð7Þ

Figure 1 displays a schematic of the sequential Bayesian
scheme (equation (5)). The probabilistic model for evolu-
tion of the state is defined by the system equation (1) with
the assumption of Gaussian system noise having variance
Qk. The transition probability p(xk+1jxk) at time tk+1 is
written as p(xk+1 	 fk()jQk). The normalizing factor,
known as predictive distribution or evidence, is written as
follows:

p ykþ1jy1:kð Þ ¼
Z
xkþ1

p ykþ1jxkþ1ð Þp xkþ1jy1:kð Þdxkþ1: ð8Þ

By assuming Gaussian observation noise having variance
Rk+1, the likelihood p(yk+1jxk+1) at time tk+1 can be
represented as p( yk+1 	 hk+1()jRk+1), where p(njR) =

exp(	1
2
nTR	1n)/

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det 2pRð Þ

p
represents the Gaussian dis-

tribution at n with mean zero and variance R. Assuming
that observation noises are heteroscedastic (variance
changing) [Sorooshian and Dracup, 1980] and uncorre-
lated, we assume the variance of the noise to be
proportional to the magnitude of the observations,
represented as Rk+1 = r . yk+1, where r is the proportionality
factor determining the spread of the likelihood function
(for details, see Moradkhani et al. [2005]). By substituting
the likelihood (as mentioned above) in (5) and combining

it with (7) and (8), the update step (filtering posterior) is
written as

p xkþ1jy1:kþ1ð Þ ¼

p ykþ1 	 hkþ1ðÞjRkþ1ð Þ
Z

p xkþ1 	 fkðÞjQkð Þp xk jy1:kð ÞdxkZ
p ykþ1 	 hkþ1ðÞjRkþ1ð Þ½ �

Z
p xkþ1 	 fkðÞjQkð Þp xk jy1:kð Þdxk

� �
dxkþ1

ð9Þ

[13] Although this recursive form presents a nice con-
ceptual representation of the method for filtering the
posterior density of model state variables, the multidi-
mensional integration typically makes a closed-form so-
lution intractable for hydrologic systems. A more general
tractable solution approach involves application of the
sequential Monte Carlo (MC) sampling method [Doucet
et al., 2000].

3. Particle Filtering

3.1. Sequential Monte Carlo

[14] As mentioned earlier, in some specific cases a
sequential analysis can be carried out using the analytical
form of the filter (e.g., standard Kalman filter) thereby
achieving exact calculations for the posterior distributions
of interest. However, unlike the Kalman filter which
simplifies recursive estimation by assuming Gaussian
distributional properties for the prognostic (state) variables,
Monte Carlo methods based on particle filters relax the
need for restrictive assumptions regarding the forms of the
probability densities; that is, they can handle the propaga-
tion of non-Gaussian distribution through nonlinear models.
In essence, Monte Carlo simulation provides a straightfor-
ward approach for performing stochastic model computa-
tions by generating a large number of random realizations
of the variables or parameters of interest, solving determin-
istic equations for each realization, and estimating the
statistical properties of the results from the ensemble of
realizations.

Figure 1. Formal Bayesian scheme for evolution of the conditional probability density of the state
variables by assimilating observations from time tk to time tk+1.
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[15] The earliest application of SMC methods can be
traced back to the 1950s in the field of polymer
growth [Hammersley and Morton, 1954; Rosenbluth and
Rosenbluth, 1956]. Although SMC methods found limited
use in the beginning, the advent of high-speed computers
during the past decade has led to widespread application of
SMCs, and particularly particle filters have become a very
active area of research. The particle filter is a SMC
procedure developed principally to allow for a full repre-
sentation of the probability distributions of state variables
via a number of independent random samples called
particles. The particles are sampled directly from the
state-space to represent the posterior probability, and
updated by assimilating the information contained in the
new observations. Particles are properly located, weighted,
and propagated sequentially by application of the Bayesian
rule. The approach is also sometimes known as the
bootstrap filter, condensation algorithm, interacting particle
approximation, or survival of the fittest [Gordon et al., 1993;
Carpenter et al., 1999; Crisan et al., 1999; Kanazawa et
al., 1995; Doucet et al., 2001]. In particle filtering, the
posterior distributions are approximated by discrete ran-
dom measures defined by particles and a set of weights
associated with particles. The particles drawn from the
posterior distribution at time tk+1 are used to map integrals
to discrete sums by the following empirical approximation
[Arulampalam et al., 2002]:

p x0:kþ1jy1:kþ1ð Þ ¼
XNp

i¼1

wi
kþ1d x0:kþ1 	 xi0:kþ1

� �
; ð10Þ

where {xk+1
i , wk+1

i } denote the ith particle and its weight,
respectively, and d() denotes the Direc delta function.

3.2. Sequential Importance Sampling (SIS)

[16] The important concept in particle filtering is the
principle of (SIS) or Bayesian importance sampling (BIS),
used for selection of the particle weights [Doucet, 1998].
The more commonly used SIS principle is based on the fact
that direct sampling from the target density (posterior)
p(x0:k+1jy1:k+1), which is often non-Gaussian, is generally
difficult (if not impossible). To avoid this difficulty, impor-
tance sampling generates particles xk+1

i from a known
function q(x0:k+1jy1:k+1) known as a proposal distribution
(or importance density) and assigns the weights (importance
weights) according to

wi*
kþ1 ¼

p xi0:kþ1jy1:kþ1

� �
q xi0:kþ1jy1:kþ1

� � : ð11Þ

A sequential update to the importance weights, at each
iteration, is achieved by factorizing the proposal distribution
such that

q x0:kþ1jy1:kþ1ð Þ ¼ q xkþ1jx0:k ; y1:kþ1ð Þq x0:k jy1:kð Þ: ð12Þ

Using this relation, the new sample xk+1
i � q(xk+1jx0:k, y1:k+1)

is augmented to the existing samples x0:k
i � q(x0:kjy1:k) to

obtain the samples x0:k+1
i � q(x0:k+1jy1:k+1). To derive the

weight updating equation, we simplify (4) as

p x0:kþ1jy1:kþ1ð Þ ¼ p ykþ1jxkþ1jy1:kð Þp xkþ1jxkð Þ
p ykþ1jy1:kð Þ p x0:k jy1:kð Þ

/ p ykþ1jxkþ1jy1:kð Þp xkþ1jxkð Þp x0:k jy1:kð Þ: ð13Þ

By substituting (12) and (13) into (11), a sequential estimate
for the importance weights is derived as

wi*
kþ1 /

p ykþ1jxikþ1jy1:k
� �

p xikþ1jxik
� �

p xi0:k jy1:k
� �

q xikþ1jxi0:k ; y1:kþ1

� �
q xi0:k jy1:k
� �

¼ wi*
k

p ykþ1jxikþ1jy1:k
� �

p xikþ1jxik
� �

q xikþ1jxi0:k ; y1:kþ1

� � : ð14Þ

Equation (14) expresses the basic principle of the sequential
importance sampling filter. Arulampalam et al. [2002]
explained that if q(xk+1jx0:k, y1:k+1) = q(xk+1jxk, yk+1), only
xk+1
i needs to be kept in storage, and therefore all the
computed values of x0:k

i and history of observations y1:k are
discarded and the weight updating simplifies to

wi*
kþ1 / wi*

k

p ykþ1jxikþ1

� �
p xikþ1jxik
� �

q xikþ1jxik ; ykþ1

� � : ð15Þ

Correspondingly, the filtering posterior density in (9) is
approximated by

p xkþ1jy1:kþ1ð Þ ¼
XNp

i¼1

wi
kþ1d xkþ1 	 xikþ1

� �
: ð16Þ

where wk+1
i are the normalized weights given by

wi
kþ1 ¼

wi*
kþ1PNp

i¼1

wi*
kþ1

: ð17Þ

With such an approximation, any expectations with the
complicated form of

E g Xð Þ½ � ¼
Z
xkþ1

g xkþ1ð Þp xkþ1jy1:kþ1ð Þdxkþ1 ð18Þ

may be approximated by

E g Xð Þ½ � �
XNp

i¼1

wi
kþ1g xikþ1

� �
: ð19Þ

We therefore obtain a discrete weighted approximation to
the true filtering posterior. By increasing the number of
particles (Np ! 1), the estimate will converge to the true
expectation.
[17] Several authors [Doucet et al., 2000; Wan and Van

der Merwe, 2001; Arulampalam et al., 2002; Djurić et al.,
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2003] have reported that the choice of proposal function is a
critical design issue and one may achieve poor performance
if the proposal function is not well chosen. The most
convenient and frequently used importance function is the
transition prior, where

q xikþ1jxik ; ykþ1

� �
¼ p xkþ1jxik

� �
: ð20Þ

By substituting (20) into (15), the weight updating becomes

wi*
kþ1 / wi*

k p ykþ1jxikþ1

� �
: ð21Þ

[18] A common problem with the SIS particle filter,
however, is that the performance of the filter deteriorates
quickly due to degeneration of random measures. Degen-
eracy is an undesirable and unavoidable effect in SIS
particle filters where the variance of the importance
weights increases stochastically over time, occurring
because after a few iteration (time steps), all the particles
except one are discarded because their importance
weights become insignificant [Doucet, 1998]. The effec-
tive sample size can be used as a measure of degeneracy
[Kong et al., 1994; Liu and Chen, 1998]; however, the
exact effective sample size cannot be computed and we
must therefore rely on an estimated value according to (22)
(see Doucet [1998] for exact derivation of effective sample
size).

Neff �
1PNp

i¼1

wi
kþ1

ð22Þ

[19] Arulampalam et al. [2002] explained that small Neff

indicates severe degeneracy, and therefore it is common to
set a fixed threshold Nthresh so that if Neff � Nthresh, the
effect of degeneracy needs to be reduced by resampling. In
practice, a resampling step is frequently essential for the
filter to work [Pham, 2001]. In essence, resampling is
followed by a Markov chain chaotic Monte Carlo
(MCMC) move step, which introduces a sample variety
without deteriorating the characterization of the posterior
distribution. Several resampling schemes have been pro-
posed in literature including sampling importance resam-
pling [Rubin, 1988; Smith and Gelfand, 1992], residual
resampling [MacKay, 1992; Higuchi, 1997], auxiliary
sampling importance resampling [Pitt and Shephard,
1999], minimum variance sampling [Doucet et al.,
2001], and regularization based on kernel density [Musso
et al., 2001]. Next, we elaborate on the sampling impor-
tance resampling algorithm and will examine the applica-
bility and usefulness of this procedure in hydrologic data
assimilation.

3.3. Sampling Importance Resampling (SIR) Particle
Filter

[20] In a generic particle filter (equations (10)–(17)),
particles tend toward dispersion owing to the stochastic
behavior of the system, with the result that many of them
drift away from the ‘‘truth’’ and obtain negligible weight
(probability); that is, only a few particles participate
effectively in the filter. The SIR particle filter avoids this
problem by adding a resampling procedure to the SIS

particle filter [Rubin, 1988; Smith and Gelfand, 1992].
The SIR scheme eliminates particles having low impor-
tance weights while accumulating particles having high
importance weight, essentially by mapping the Dirac
random measure {xk

i , wk
i } into an equally weighted

random measure {xk
i , 1/Np} so that Np particles are

produced all with weighting 1/Np. The SIR algorithm
consists of two steps: (1) The importance density
q(xk+1jxki ,yk+1) is chosen to be the prior transition density
p(xk+1jxki ), and (2) resampling is performed as outlined in
Figure 2. The SIS and SIR filters are very similar, with
the only difference being that in SIR, resampling is
always performed at each step, while in SIS, resampling
is carried out when degeneracy occurs. The following
one-dimensional state-space problem example is used to
illustrate the reduction of degeneracy using SIR.

3.4. Problem: One-Dimensional State-Space Model

[21] Consider the application of SIS and SIR particle
filtering to the following non-Gaussian, nonlinear state-
space and observation model used as an illustrative example
by several authors [Andrade Netto et al., 1978; Gordon et
al., 1993; Kitagawa, 1996; Doucet et al., 2000]:

xk ¼
1

2
xk	1 þ 25

xk	1

1þ x2k	1

þ 8 cos 1:2kð Þ þ wk wk � N 0; s2w
� �

ð23Þ

yk ¼
x2k
20

þ nk nk � N 0; s2n
� �

; ð24Þ

where wk and nk are mutually independent Gaussian process
and observation noises with sw

2 = 10 and sn
2 = 1. The initial

state is taken to be x0 = 0.1. Figure 3 displays the
performance of three particle filtering strategies in estima-
tion of the state and output variables. The time variation of
the effective sample size during SIS filtering shows that
severe degeneracy occurs during almost all time steps
(when Neff < Np). As noted earlier, degeneracy occurs
when most of the particles have negligible weight, so that
the variance of importance weights increases over time and
the particles lose their ability to correctly approximate the
posterior distribution. If resampling is performed when the
effective sample size becomes less than a specified thresh-
old (here 700 particles), then the effective sample size
generally increases, resulting in improvement of accuracy;
lower root-mean-square error (RMSE) is achieved for both
state estimation and prediction, with more realistic un-
certainty bounds. However, SIR (which resamples at every
time step) eliminates the degeneracy problem completely
with the effective sample size remaining almost equal to the
total sample size, resulting in significant improvements to
the approximations of estimation and uncertainty bounds.
Figure 3 shows the RMSE of the posterior mean and true
values in both state-space and the prediction for the different
filtering strategies. Considering the superior performance of
the SIR algorithm, we have adopted this procedure and
demonstrate the extension of its applicability to parameter
and state uncertainty estimation for hydrologic models.

3.5. SIR Particle Filtering in State-Parameter Space

[22] Considering that the main purpose of this study is to
implement particle filtering for joint state-parameter esti-
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mation and uncertainty assessment, in addition to resam-
pling of the state variables, resampling in the parameter
space is also carried out using a proposal density of the
form

q qkþ1jqk ; ykþ1ð Þ ¼ p qkþ1jqkð Þ: ð25Þ

[23] Although the effects of degeneracy can be reduced
through resampling, a problem known as sample impover-
ishment leads to many particles having high weights wk

i

being selected many times, leading to a loss of diversity
among particles. Gordon et al. [1993] illustrated that this
problem becomes apparent when the dynamical system is
noise-free or has a very small noise causing the particles to

lack the opportunity to move in space stochastically. There-
fore the process noise in the forward equation (1) plays a
major role in particle filter performance by reducing the
tendency toward sample impoverishment. In the case of
parameter estimation, with the absence of an explicit form
for the forward equation we can avoid parameter sample
impoverishment by perturbing the resampled parameters
(see the resampling procedure outlined in Figure 2) to be
used at each successive time step:

qikþ1 ¼ qik	resamp þ eik eik � N 0; s2Varqk
� �

; ð26Þ

where ek
i is a small random noise, normally distributed with

zero mean and variance s2Vark
q. Vark

q is the variance of

Figure 2. Resampling procedure flowchart and an example of the resampling process. A random
particle xk

i with weight wk
i is mapped into a new indexed particle xk

j with weight 1/Np. See color version of
this figure in the HTML.
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parameter particles at time k before resampling, and s is a
small tuning parameter which determines the radius around
each particle being explored. This representation of SIR
particle filtering generates model parameter ensembles via
resampling to avoid degeneracy and parameter perturbation
to avoid sample impoverishment. A full description of the
SIR algorithm in a joint state-parameter space is given
below and illustrated in Figure 4.
[24] 1. Model state initialization: Initialize Nx –dimen-

sional model state variables for Np particles, xk
i , i = 1,. . ., Np,

x 2 <Nx .
[25] 2. Parameter sampling: Sample Nq –dimensional

model parameters for Np particles

qik ; i ¼ 1; . . . ;Np; q 2 <Nq :

[26] 3. Particle weight assignment: Assign the particle
weights uniformly,

wi
k ¼

1

Np

i ¼ 1; . . . ;Np:

[27] 4. Model state forecast step: Propagate the Np state
variables and model parameters forward in time using the
nonlinear model operator f (),

xikþ1 ¼ f xik ; q
i
k ; Ik

� �
þ wkþ1 wkþ1 � N 0;Qkþ1ð Þ:

[28] 5. Observation simulation: Use the observation
operator h() to propagate the model state forecast,

yikþ1 ¼ h xikþ1; q
i
k

� �
þ nkþ1 nkþ1 � N 0;Rkþ1ð Þ:

[29] 6. Estimate the likelihood:

L ykþ1jxikþ1; q
i
k

� �
¼ 1

2pð Þ1=2 Rkþ1j j1=2

� exp 	 1

2Rkþ1

ykþ1 	 hikþ1 :ð Þ

 �2� 


p ykþ1jxikþ1; q
i
k

� �
¼

L ykþ1jxikþ1; q
i
k

� �
XNp

i¼1

L ykþ1jxikþ1; q
i
k

� �
¼ p ykþ1 	 hikþ1 :ð ÞjRkþ1


 �
:

[30] 7. Obtain the updated particle weight (filtering
posterior):

wi
kþ1 ¼

wi
k : p ykþ1 	 hikþ1 :ð ÞjRkþ1


 �
XNp

i¼1

wi
k : p ykþ1 	 hikþ1 :ð ÞjRkþ1


 � :

[31] 8. Resampling: Apply the resampling procedure
flowchart outlined in Figure 2 for all states and parameters,
and store the resulting particles as qk	resamp

i , xk	resamp
i .

Figure 3. Sequential Monte Carlo analysis for state estimation and prediction in a one-dimensional
state-space model using 1000 particles. (a) Sequential importance sampling (SIS). It is seen that
degeneracy occurs at almost all time steps. (b) SIS + resampling when the effective sample size becomes
less than the threshold (700 particles). (c) Sampling importance resampling (SIR): SIS + resampling at
each time step. Solid circles and dash-dotted lines in state and prediction subplots denote the true value
and the estimate, respectively; vertical solid lines represent the uncertainty bounds associated with the
95% confidence interval. See color version of this figure in the HTML.
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[32] 9. Parameter particle perturbation: Perturb the par-
ticles within a small neighborhood to avoid sample impov-
erishment

qikþ1 ¼ qik	resamp þ eik eik � N 0; s2Varqk
� �

:

[33] 10. Check the stopping criterion: If k is equal to the
desired number of time steps, stop; otherwise k = k + 1 and
return to step 3.

4. Case Studies

[34] We present two case studies using a parsimonious
conceptual watershed model to demonstrate the capability
and usefulness of the SIR particle filter for estimating the
parameters, state variables, and prediction uncertainties. The
first synthetic case study is used to illustrate the power of
particle filter for tracking the uncertainty bound associated

with parameters and state variables where synthetic ‘‘obser-
vations’’ of streamflow are assimilated into the model. The
second case investigates the applicability of the same filter
for recursive parameter uncertainty estimation by assimilat-
ing historical observations of streamflow. We conclude by
discussing the necessity for considering other sources of
uncertainties to attain more accurate model predictions.
[35] The simple conceptual hydrologic model (HyMOD)

has its origins in the probability distributed moisture model
(PDM) [Moore, 1985] and has been used by several authors
for testing batch and recursive calibration strategies [Boyle
et al., 2000; Wagener et al., 2001; Vrugt et al., 2003; Misirli
et al., 2003; Moradkhani et al., 2005]. HyMOD is an
extension of simple lumped storage models developed in
the 1960s and consists of a nonlinear rainfall excess model
(see Moore [1985, 1999] for details) connected in series
with an arrangement of linear routing reservoirs (three
identical quick-flow tanks in parallel with a slow-flow tank

Figure 4. SIR particle filtering flowchart for estimating the posterior distribution of parameters.
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Figure 5. Schematic of the conceptual hydrologic model (HyMOD). See color version of this figure in
the HTML.

Figure 6. Time evolution of the HyMOD posterior parameter distributions at six different time
segments by assimilation of synthetic streamflow. The crosses and solid circles denote the true and
expected values, respectively, for each parameter.

Table 1. Prior Uncertainty Range Associated With Parameters in HyMOD

Parameter Description Minimum Maximum True Values

Rq residence time for quick-flow tanks 0.00 0.99 0.46
Rs residence time for slow-flow tank 0.001 0.10 0.03
a partitioning factor between tanks 0.60 0.99 0.83
bexp spatial variability of soil moisture capacity 0.00 2.00 0.38
Cmax maximum storage capacity of watershed 0.00 1000 350
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representing the groundwater flow) (see Figure 5). The state
variables in this system are S (the storage in the nonlinear
tank representing the watershed soil moisture content, x1, x2
and x3), the quick-flow tank storages representing the
temporary (short-time) detentions (e.g., depression sto-
rages), and x4, the slow-flow tank storage (subsurface
storage). The model assumes that the spatial variation of
soil moisture storage capacity across the watershed can be
described by the function

St ¼ Smax 1	 1	 c

cmax

� 
bexpþ1
" #

0 � c � cmax; ð27Þ

where Smax and cmax are related by

Smax ¼
cmax

bexp þ 1
: ð28Þ

[36] The model has five parameters that must be specified
from knowledge of the real system or estimated using
input-output observational data: Cmax[L], the maximum
storage capacity within the watershed; bexp[	], the degree
of spatial variability of the soil moisture capacity within the
watershed; a[	], partitioning factor of the flow between
quick-flow and slow-flow tanks; and Rq[T] and Rs[T], the
residence times of the linear tanks, respectively.
[37] For the synthetic case study we assimilate synthetic

streamflow ‘‘observations’’ generated via a free run of the
model using a predefined set of ‘‘true’’ parameters and
assuming that the forcing data (input) are noise free. In this
setting the model structure is considered to be perfect, and
therefore the only source of uncertainty is associated with
the parameter estimates. To make the estimation problem
insensitive to specification of the initial condition, an
ensemble of 1000 uniformly distributed values for the initial

Figure 7. Uncertainty bound evolution of the parameters in the HyMOD for 3 years assimilation of
synthetic streamflow. Shaded areas correspond to 95, 90, 68, and 10 percentile confidence intervals.
Asterisks at end of each parameter subplot represents the true parameter values. See color version of this
figure in the HTML.
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Figure 8. Uncertainty bound tracking of three state variables in the HyMOD. (a) Storage in the
nonlinear tank which is conceptually functioning as watershed soil moisture. (c) Quick flow tank storage.
(c) Slow-flow tank storage. Shaded areas correspond to 95% uncertainty bounds, and crosses and solid
lines denote the synthetic and expected values. See color version of this figure in the HTML.

Figure 9. Results of the SIR particle filter for hydrograph prediction using the HyMOD conceptual
watershedmodelbyassimilatingsyntheticstreamflow.(a)Quickflowfromthethirdquick-flowtank. (b)Slow
flow from the slow-flow tank. (c) Total streamflow as the summation of quick flow and slow flow. Shaded
areas in all subplots correspond to 95% confidence intervals in prediction. Crosses and solid lines denote the
synthetic and expected values of streamflow, respectively. See color version of this figure in the HTML.
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state variables is generated. The prior estimates of the
parameter uncertainty is made by guessing at a wide but
plausible range of values for the parameters. The prior range
and true values (synthetic true) are shown in Table 1. Hence
the parameter particles are sampled within the predefined
range using a uniform distribution. SIR filtering in the
parameter space was carried out at each time step and
posterior probability density estimated as illustrated in
Figure 6 for six time segments; notice that as the assimila-
tion proceeds, the posterior mean estimates for all the
parameters are converging toward the observation. The
uncertainty bounds on the residence time parameter for
the slow-flow tank are the slowest to narrow, in comparison
with the other parameters (see also Figure 7, where the time
evolution of uncertainty bounds with 95, 90, 68, and 10
percentile confidence is displayed). As seen from precipi-
tation and streamflow subplots in Figure 7, the beginning of
the time series reveals the low-flow period which obviously

does not significantly help lead parameter samples to
the right region. In other words, information content in the
beginning of time series is not enough to identify the
parameters properly. Since a recursive strategy is used in
this study, the method relies on the information content in the
new data. This is reflected by the likelihood and prior which
are changing by availability of new information. A signifi-
cant reduction of uncertainty after about 200 days is ob-
served for four of the parameters. The reason for these
reductions can be attributed to the key role of observation
(here synthetic streamflow) in updating (correcting) of
parameter samples. The ensembles of four parameters which
are moving toward the right region (true values) in parameter
space begin to be influenced partially by moderate event
(time step 180) and to higher extent by major event (time
step 200). This is in agreement with the findings of Vrugt et
al. [2002] and Wagener et al. [2003]. In regards with the
identifiability of parameters, the findings in this study are

Figure 10. Uncertainty bound tracking of parameters in the HyMOD conceptual watershed model for
3 years assimilation of historical streamflow of the Leaf River watershed for the period 28 July 1952 to
28 July 1955. Shaded areas correspond to 95, 90, 68, and 10 percentile confidence intervals. See color
version of this figure in the HTML.
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different from those two studies presumably due to (1) the
difference in time series used, especially that in the current
study the time evolution of predictive uncertainties is
influenced by information content through available data,
and (2) the mutual interaction considered between state
variables and parameters. Therefore the behavior of param-
eters is influenced by state variables as well (Figure 8). It
was found that slow-flow parameter Rs is less identifiable,
unlike other parameters that converge to the true values in
less than a year. However, the combinatorial effect of
parameter-state values results in a satisfying result as
depicted in Figure 9. The slow convergence of the
uncertainty bounds for the slow-flow tank parameter Rs

can be explained by its minimal contribution to the volume
of streamflow. Figure 8 allows comparison of the time
evolution of the uncertainty bounds for three of the state
variables (nonlinear tank storage S, last quick-flow tank
storage x3, and slow-flow tank storage x4). At the early
stage of filtering, the uncertainty is high for nonlinear and
slow-flow tank storages. Because the quick-flow tank is
most strongly correlated with the observations (stream-
flow), it is most easily and quickly identifiable. However,
the streamflow prediction via the observation equation (2)
results from the combined effect of the highly interactive
state and parameter values, complicating the assimilation
of the streamflow measurement into the quick-flow and
slow-flow components (Figure 9). Because the quick flow
is highly correlated with the observation, it rapidly
achieves a smaller uncertainty bound while the uncertainty

in the slow flow diminishes slowly. Note that for purposes
of clarity the plots have been displayed in different scales
and that the uncertainty associated with the slow flow in
the normal scale is actually almost negligible, despite the
high uncertainty in slow-flow parameter and storage. The
case studies shows that the procedure is able to identify
even the less influential components in generating the
predictive variable (here streamflow) of the highly inter-
active (state-parameter) system.
[38] We next implement the methodology to a real case

study by assimilating the historical streamflow into the
model. Filter performance was tested using 3 years of data
(28 July 1952 to 28 July 1955) from the 1944-km2 Leaf
River watershed, located north of Collins, Mississippi. The
data, obtained from the National Weather Service Hydrology
Laboratory, consist of mean areal precipitation (mm/d),
potential evapotranspiration (mm/d), and streamflow
(cm3/s).
[39] The system setup, including the prior uncertainty

range for the parameters and number of particles in state
and parameter space, remains as before. The time evolu-
tion of uncertainty bounds for different confidence inter-
vals is displayed in Figure 10. Parameters Rq, bexp, and
Cmax are seen to converge to specific regions of the
parameter space with relatively small uncertainty bounds
in comparison with parameters a and Rs. Figure 11
presents the prediction uncertainty ranges for the HyMOD
simulated streamflow corresponding to SIR particle filter.
Despite generally good conformity between observed and

Figure 11. Result of the SIR particle filter for hydrograph prediction using the HyMOD by assimilating
historical streamflow of the Leaf River watershed for the period 28 July 1952 to 28 July 1955.
(a) Hydrograph uncertainty bounds with 95% confidence interval associated with the derived posterior
parameter distribution using 1000 particles. (b) Residual bounds associated with 95% confidence interval
and observations (streamflow). See color version of this figure in the HTML.
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simulated time series, some of the high-flow events do not
lie within the prediction uncertainty bounds. This indicates
that the attribution of the uncertainty to only the parameter
estimates is inappropriate. In continuing studies, the roles
of various other sources of uncertainties including those
attributable to the model structure, forcing data observation
(precipitation), and output observation (streamflow) must
also be considered.

5. Summary and Conclusion

[40] We have investigated the use of a sequential Monte
Carlo method, also known as a particle filter, for practical
uncertainty assessment of parameter and state estimation in
a conceptual hydrologic model. Although the Kalman filter
is highly effective and efficient if the underlying assump-
tions hold, it is limited by its closure at the second-order
moments (i.e., the filter evolution is controlled by its
second-order characteristics and Gaussian distribution of
error components). In real hydrologic applications, the
assumptions of system linearity or Gaussian error model
do not hold. Nonlinear Bayesian parameter estimation
methods such as BaRE do not treat the joint state-parameter
uncertainty, while also suffering from a tendency toward
sample degeneracy caused by the inability to properly
sample the evolving conditional posterior parameter density.
Recent developments in sequential Bayesian estimation
based on Monte Carlo methods make the application of
improved techniques possible for more accurate uncertainty
assessment of hydrologic models. Particle filters are able to
handle model nonlinearities while computing a complete
(arbitrarily accurate) representation of the posterior distri-
bution so that any statistical measure of the quantities of
estimate can easily be computed. In this paper we discussed
the use of particle filters for state-parameter uncertainty
estimation using sequential importance sampling (SIS) and
sampling importance resampling (SIR). The SIR particle
filter was extended to handle estimation of the joint
parameter and state posterior distribution. To avoid sample
impoverishment, a small random perturbation was applied
to the parameter samples after resampling. A synthetic
case study was used to test the power and applicability of
the methodology using a simple but representative con-
ceptual watershed model (HyMOD). A further application
using actual observations of historical streamflow data
from Leaf River watershed showed that despite good
agreement between the observed time series and the
simulated predictions, some of the high flows fall outside
of the estimated prediction uncertainty intervals. This
supports the findings of other studies [e.g., Thiemann et
al., 2001; Wagener et al., 2003; Gupta et al., 2003a; Vrugt
et al., 2003; Moradkhani et al., 2005] that the role of other
sources of uncertainty (e.g., model structural error and input
measurement errors) must also be considered to improve
accuracy in the model predictions. Research aimed at further
improvements to the current filtering algorithm, including
the resampling procedure and methods for accounting for
various sources of uncertainties, will continue and be
reported in the future. Methods for improving the compu-
tational efficiency of the particle filter for larger systems are
also an open area for further research.
[41] We close by noting that particle filters are easily

and directly applicable to more complex models such as

land surface models where the estimation of state posterior
distributions is of major concern. However, successful data
assimilation relies on unbiased prediction of the model
state, which is largely dependent on accurate model
parameterization. For model parameters that cannot be
determined directly by measurement, the particle filter
provides an attractive approach for joint estimation of
parameter uncertainty in addition to the model state
uncertainty. Nonetheless, prospective improvement in se-
quential Monte Carlo (particle filtering) applicable to any
hydrolometeorological model is an open issue and we
welcome the exchange of ideas related to it. The software
used for the current work is available by request from the
first author.
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