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Abstract Satellite-based precipitation estimates (SPEs) are promising alternative precipitation data for
climatic and hydrological applications, especially for regions where ground-based observations are limited.
However, existing satellite-based rainfall estimations are subject to systematic biases. This study aims to
adjust the biases in the Precipitation Estimation from Remotely Sensed Information using Artificial Neural
Networks–Cloud Classification System (PERSIANN-CCS) rainfall data over Chile, using gauge observations as
reference. A novel bias adjustment framework, termed QM-GW, is proposed based on the nonparametric
quantile mapping approach and a Gaussian weighting interpolation scheme. The PERSIANN-CCS precipitation
estimates (daily, 0.04°×0.04°) over Chile are adjusted for the period of 2009–2014. The historical data
(satellite and gauge) for 2009–2013 are used to calibrate the methodology; nonparametric cumulative
distribution functions of satellite and gauge observations are estimated at every 1°×1° box region. One year
(2014) of gauge data was used for validation. The results show that the biases of the PERSIANN-CCS
precipitation data are effectively reduced. The spatial patterns of adjusted satellite rainfall show high
consistency to the gauge observations, with reduced root-mean-square errors andmean biases. The systematic
biases of the PERSIANN-CCS precipitation time series, at both monthly and daily scales, are removed. The
extended validation also verifies that the proposed approach can be applied to adjust SPEs into the future,
without further need for ground-based measurements. This study serves as a valuable reference for the bias
adjustment of existing SPEs using gauge observations worldwide.

1. Introduction

Precipitation is one key input variable for hydrological process modeling and climatic studies of extreme
events, such as floods and droughts. The quality of precipitation estimates can largely influence the inferred
outcomes of these applications. It is widely recognized that the ground-based gauge can provide reliable
precipitation measurements at gauge points. However, uncertainty from gauges increases when the precipi-
tation measurement is extended from the point scale to a spatial coverage [Huff, 1970]. This limitation of
gauge observation can be much worse in semiarid or mountainous regions where the gauge network is
generally sparse. Satellite estimates provide an alternative for precipitation measurements for those regions
where ground observations are limited or not available. Satellite-based retrieval algorithms take advantage of
the visible and infrared spectral information observed from Geostationary Earth Orbiting (GEO) satellites or
the passive microwave (PMW) images from Low Earth Orbiting (LEO) satellites to generate rainfall estimates,
offering much better coverage than gauge observations [Boushaki et al., 2009]. A range of satellite-based
precipitation products have been developed during the past two decades [Adler et al., 2003; Ashouri et al.,
2015; Hong et al., 2004; Hsu et al., 1997; Hsu et al., 1999; Huffman et al., 2009; Huffman et al., 2010; Huffman
et al., 2007; Huffman et al., 2014; Joyce et al., 2004; Kubota et al., 2007; Kuligowski, 2002; Mitchell et al., 2004;
Sorooshian et al., 2000; Xie and Arkin, 1997].

However, without direct reference to ground-based measurements, satellite-based precipitation estimates
(SPEs) are subject to systematic bias. The bias of SPEs may come from different sources, including sampling
error, sensor limitations, and during estimation from retrieval algorithms. SPEs are interpreted from snapshot
images from GEO and LEO satellites, which are different from “true” values. Samples from GEO satellites are
within the spectral range of visible and infrared wavelengths providing cloud albedo or cloud top thermal
temperatures which are only indirectly related to the rainfall below the clouds. More direct sensing of rainy
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clouds can be obtained from low-frequency PMW spectrums; however, samples from PMW sensors are less
frequent and limited in spatial coverage compared to those from GEO-based sensors.

To better understand the presence of bias, satellite-based rainfall products have been extensively evaluated
in recent years. Li et al. [2013] conducted a multiscale evaluation of four mainstream products over the
Yangtze River and found that these products exhibited considerable biases in different temporal scales.
Hirpa et al. [2010] and Romilly and Gebremichael [2011] indicated that the PMW-based rainfall products
outperformed the infrared-based counterparts and the biases in SPEs depended on different rainfall regimes.
Over mountainous regions, studies showed that the SPEs examined could not fully capture the dependence
of mean precipitation on elevation [Gao and Liu, 2013; Krakauer et al., 2013]. For extreme rainfall, it was
pointed out that no single rainfall product could be considered ideal for detecting extreme events,
and the SPEs tended to miss a significant volume of rainfall [AghaKouchak et al., 2011; Miao et al.,
2015]. Under these situations, some uncertainty analysis models were also proposed to examine the
biases in SPEs [Sarachi et al., 2015; Tian et al., 2009]. Other assessments focus on the utility of SPEs from
the perspective of hydrological modeling. Studies found that the biases in SPEs led to systemic
overestimation/underestimation in hydrological simulations [Behrangi et al., 2014; Behrangi et al., 2011;
Bitew and Gebremichael, 2011; Gebregiorgis et al., 2012; Thiemig et al., 2013]. Those studies concluded that
considerable biases exist in SPEs and that bias adjustment is an essential step prior to the hydrological
applications using SPEs.

Different bias adjustment approaches were used to improve the data quality of SPEs recently. Among
these approaches, the simple scaling method was commonly used [Boushaki et al., 2009; Lin and Wang,
2011; Tesfagiorgis et al., 2011; Vila et al., 2009]. This method calculates the additive or multiplicative bias
factors (at daily or monthly) of SPEs against reference data (i.e., gauge observations). The original SPEs
are then rescaled according to the bias factors, reducing the biases. But, there are two limitations existing
in the simple scaling method. This method cannot work without simultaneous reference data, and it fails
to take advantage of historical data that may still contain useful information about the spatial/temporal
patterns of rainfall. In contrast, the quantile mapping (QM) approach can successfully avoid these limita-
tions in the bias correction of modeled precipitation data. It is a distribution-based approach, which uses
historical data for bias adjustment, and simultaneous reference data are therefore not needed. Specifically,
the QM approach is designed to transform the cumulative distribution function (CDF) of modeled data
into the CDF of observed climatology at the nearest station [Bennett et al., 2014; Gudmundsson et al.,
2012; Themessl et al., 2012]. Some comparison studies indicated that the QM method had the best skill
in reducing the systematic bias of regional climate model precipitation estimates [Jie et al., 2013;
Themessl et al., 2011]. In particular, the nonparametric QM approach is highly valued for bias adjustment,
because it does not rely on any predetermined function and as such provides more flexibility. In addition,
from a hydrological modeling perspective, it was found that the sophisticated QM method resulted in
better hydrological performance than that of the more simple scaling method [Piani et al., 2010;
Thiemig et al., 2013]. Recently, Zhang and Tang [2015] employed the QM approach to adjust satellite
precipitation using gauge observation in China and produced reliable precipitation data for hydrological
monitoring. In addition, some other researchers have used a similar distribution-based approach (proba-
bility density function matching) to adjust SPEs [Sheffield et al., 2014; Shen et al., 2014; Xie and Xiong,
2011]. Based on these, examining the degree of effectiveness of QM approach in adjusting the bias of
SPEs is a logical next step.

In this study, the Precipitation Estimation from Remotely Sensed Information using Artificial Neural
Networks–Cloud Classification System (PERSIANN-CCS) [Hong et al., 2004] precipitation product over Chile
is adjusted. The objective is to reduce the systematic biases existing in the daily PERSIANN-CCS data set
over Chile. A bias-adjusting framework is developed that incorporates the QM approach and Gaussian
weighting (GW) interpolation. It is tested using PERSIANN-CCS estimates and gauge observations, as refer-
ence data, over Chile. We expect that the results will serve as a good test and reference for the application
of the proposed approach for bias correction of satellite-based precipitation products in other regions of
the world. This paper is organized as follows: section 2 presents the study area, precipitation data sources,
and the construction of methodology; section 3 exhibits the evaluation of the bias adjustment results;
section 4 presents the discussion and conclusions; and the future outlook for the method application is
given in section 5.
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2. Study Area, Data Sources, and Methodology
2.1. Study Area and Data Sources
2.1.1. Study Area
Figure 1 shows the location of the study area, covering the whole territory of Chile, extending from 17°S to
56°S, bounded by the South Pacific Ocean on the west and by the Andes mountain range on the east. The
long territory and diverse topography jointly result in quite different climate zones in Chile. Northern Chile
has arid/semiarid conditions with extremely scarce precipitation, while in the south, abundant precipitation
is observed reaching amounts of up to 6000mm/yr [Nunez et al., 2011; Smith and Evans, 2007; Verbist et al.,
2010]. Temporally, there are four seasons in Chile: fall (March-April-May (MAM)), winter (June-July-August
(JJA)), spring (September-October-November (SON)), and summer (December-January-February (DJF)), and
most precipitation falls in winter time. Unusually severe droughts have affected the country in the last
decade, both because of their intensity and multiannual duration [Garreaud, 2015]. This is consistent with
climate change projections for that region that indicate central-southern Chile as a global hot spot
for increased drought frequency, causing water security issues in these regions [Prudhomme et al., 2014].

Figure 1. Location of the study area.
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In the high-altitude regions, the impact of floods due to fast rainfall-runoff response and high runoff coeffi-
cients results in significant socioeconomic costs [Blume et al., 2008; Favier et al., 2009]. Thus, reliable SPEs
with high spatial/temporal resolution are extremely useful for drought analysis and flood prediction over
Chile.
2.1.2. Data Sources
The precipitation data used in this study include the PERSIANN-CCS precipitation estimates and the historical
gauge observations. The PERSIANN-CCS data are provided from the Center for Hydrometeorology and
Remote Sensing, University of California, Irvine, and the gauge observations are retrieved from the
Chilean Climate Data Library (website: http://www.climatedatalibrary.cl/SOURCES/.Chile/.DGA/.meteorologi-
cal/.Precipitation/.Historical/.Daily/). The two data sources are further described as follows:

1. PERSIANN-CCS precipitation estimates
PERSIANN-CCS [Hong et al., 2004] is an infrared-based satellite estimation system. It employs computer image
processing and pattern recognition techniques to develop patch-based cloud classification. Based on the
cloud classification and artificial neural network model, pixel precipitation intensity is estimated globally.
PERSIANN-CCS can produce hourly SPEs at a spatial resolution of 0.04°×0.04°, which is a desirable resolution
for hydrological applications at local scale. In this study, the daily original PERSIANN-CCS (Ori-CCS) precipita-
tion data, accumulated from hourly Ori-CCS estimates, are adjusted. Because insufficient samples are avail-
able from GEO sensors over part of southern Chile (46°S–56°S), the Ori-CCS estimates are not available
every hour for that area. Thus, the study area was limited to the latitude from 17°S to 46°S. To ensure temporal
consistency between the data sets, the UTC time of Ori-CCS is adjusted to match Chilean local time that is
used for the gauged rainfall data.

2. Historical gauge observations
The gauge observations are used as the reference data in testing the bias adjustment approach. These data
were produced by the Chilean National Water Authority, which imposes a strict quality control on the data
measurements. Missing and unrealistic, nonphysical data are flagged and checked through a double-mass
curve analysis, and data are eliminated from the data series if apparent errors are identified. Over this area
(17.5°S to 46°S), there are a total of 456 gauges selected, for which daily precipitation observations have been
archived over the 2009–2014 period (Figure 2a). Over this period, on average there is only a 2% missing data
rate. Sufficiency of historical ground data is important for constructing reliable transformations for bias
adjustment using the QM approach. For the CDF construction of the QM approach the Ori-CCS precipitation
data must overlap the observed precipitation records for the same time period.

2.2. Methodology

In this section, the bias adjustment framework, called QM-GW, is presented. It is based on the QM approach
and a GW interpolation scheme. The QM approach is used to primarily correct the Ori-CCS precipitation esti-
mates using CDFs calculated from gauge and satellite estimation at every 1°×1° box area. The GW interpola-
tion aims to grid the adjusted PERSIANN-CCS (Adj-CCS) rainfall series at satellite pixels (0.04°×0.04°), based on
the bias-corrected estimates.
2.2.1. CDFs of Gauge and Satellite Estimation at 1°×1° Grid Boxes
The nonparametric QM approach is used for mapping the Ori-CCS rainfall estimates to the gauge measure-
ments. The nonparametric QM is constructed with the nonparametric CDFs that are calculated from the
Ori-CCS precipitation at gauged satellite pixels and the corresponding gauge observations. In previous
related studies, CDFs were estimated individually at each gauged pixel or calculated for every satellite pixel
with gridded gauge observations [De Vera and Terra, 2012; Themessl et al., 2011; Thiemig et al., 2013].
However, in this study, the CDFs are calculated for every 1°×1° box region rather than at each gauge point.
It is assumed that those gauges within each 1°×1° box share the same CDF. As shown in Figure 2b, the whole
study area is divided into 98 1°×1° boxes, of which 31 boxes do not include any gauge station and are marked
with heavy border/edge grid boxes.

The CDFs at each box are calculated based on the included gauged pixel Ori-CCS estimates and the concur-
rent ground observations, which are mixed together in advance, respectively. The method for calculating the
nonparametric CDFs follows Wilks [1995]. This method was employed by Themessl et al. [2011] as well.
Notably, we calculate four pairs of CDFs at each box using the historical daily rainfall samples from four
seasons (MAM, JJA, SON, and DJF), separately (see Figure 2c). This means that two nonparametric CDFs are
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calculated for each season at a given CDF box. This is different from previous studies which considered the
entire year of data as a whole, such as De Vera and Terra [2012]. These seasonally divided CDFs enable specific
transformations in mapping SPEs, providing more reliable adjustment results.

As shown in Figure 2b, for those 1°×1° grid boxes where gauges are not available, the gauge observations
and satellite estimations from neighboring 1°×1° grid boxes are collected to estimate the CDF of that 1°×1°
grid box. Similarly, if no gauge in the 1°×1° neighborhood is available, the collection of concurrent gauge
and satellite measurements is further extended to the closest nearby 1°×1° grid boxes where gauge observa-
tions are available.
2.2.2. Bias Adjustment of Satellite Estimation
Based on the seasonally calculated nonparametric CDFs over Chile, the Adj-CCS daily rainfall (0.04°×0.04°), Ri
(t), from daily satellite estimation is calculated from daily Ori-CCS rainfall, ri(t), at a given satellite pixel i at
0.04°×0.04° resolution and time t within season s as follows:

Ri tð Þ ¼
X
j∈Ωi

wij�CDF�1G�js CDFCCS�js ri tð Þð Þ� � ¼ X
j∈Ωi

wij� r’ij tð Þ (1)

where CDF�1G�js is the inverse CDF of gauge observations for season s at box j; CDFCCS� js denotes the CDF of
Ori-CCS precipitation for season s at the box j. In this study, CDFs from the four 1°×1° boxes near pixel i (j ∈Ωi)
are used to obtain bias-corrected estimates r ′ij tð Þ, based on the nonparametric QM approach. The nearby CDF
boxes are identified with the distances from pixel i to the centers of those CDF boxes (see Figure 2c). The

Figure 2. CDF calculation procedures. (a) Four hundred fifty six rain gauges (marked as “cross”) collected over the study area, (b) 1°×1° grid boxes (the boxes with
heavy boarder include no gauge) divided for CDF calculation, (c) the centers of the grid boxes and an example of the seasonal CDFs calculated in a grid box, and (d)
the Gaussian function used in GW interpolation.
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weighting factor (wij) of each r ′ij tð Þ is estimated based on the distance of satellite pixel i at 0.04° resolution to
the center of box j. A Gaussian function (see Figure 2d) is proposed to generate interpolation weights:

wij ¼ exp � dij=C
� �2� �

=
X4
j¼1

exp � dij=C
� �2� �

(2)

dij ¼ dij=D (3)

where wij is the weighting factor assigned for r ′ij tð Þ; dij represents the relative distance from pixel i to the cen-
ter of nearby 1°×1° box j; dij is the distance from pixel i to the center of nearby CDF box j;D is a constant, which
equals the distance between the two 1°×1° grid centers that are farthest apart; and C is the shape parameter
of the Gaussian function. C is assigned a value of 0.33 in this study (see Figure 2d).

The flowchart of the bias adjustment is listed in Figure 3. The proposed bias adjustment methodology is
evaluated over the time period of 2009–2014. From that data, 5 years of data (2009–2013) are used for the
estimation of seasonal CDFs at the 98 boxes, with 1 year data (2014) used to verify the bias-adjusted CCS
estimation using the CDFs estimated from the 5 year calibration period.

3. Evaluation

The results from the calibration and validation are evaluated using gauge observations as reference. In detail,
the performance of the Ori-CCS and Adj-CCS data sets are assessed in two aspects, including the spatial pat-
tern and temporal distribution. Due to the long latitudinal extent of Chile’s territory, the annual precipitation
shows large variation from north to south (Figure 4). The spatial pattern evaluation aims to indicate spatial
improvement of the satellite-based precipitation estimates over the adjusting area, while the temporal scale
evaluation presents the ability of the bias adjustment of satellite-based precipitation time series at specified
regions that are relevant to the potential hydrological application of SPEs at local scale.

Figure 4 shows spatial distribution of average annual precipitation from gauge observations for the period
of 2009 to 2014 over the study area. It shows low-precipitation rates apparent over northern Chile, with
high precipitation observed over southern Chile. In our evaluation, three evaluation zones, representing
low-, medium-, and high-precipitation regions, are selected for the evaluation. Each zone is an area cover-
ing a 2° latitude extent. According to Figure 4, the mean areal precipitation for annual average over zone
nos. 1, 2, and 3 are calculated to be 173, 1056, and 2027mm/yr, respectively. To illustrate the systematic
errors of Ori-CCS to be adjusted, seasonal CDFs from Ori-CCS and gauge areal mean daily estimates over

Figure 3. Flowchart for the adjustment of PERSIANN-CCS for this study.
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the zones are derived and shown in
Figure 5. It is presented that the CDFs of
the two data sources for zone no. 2 are
relatively close to each other during the
seasons, indicating less systematic bias in
Ori-CCS estimation over zone no. 2.
However, Ori-CCS trends to systematically
overestimate and underestimate daily pre-
cipitation over zone nos. 1 and 3, res-
pectively, according to the corresponding
seasonal CDFs.

The performance of the Ori-CCS and Adj-
CCS precipitation estimates are evaluated
based on three statistics: the correlation
coefficient (CORR), the root-mean-square
error (RMSE), and the mean bias (BIAS).
They are calculated in the spatial and tem-
poral evaluations with equations 4–6:

CORR ¼

Xn
k¼1

Gk � G
� �

Sk � S
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
k¼1

Gk � G
� �2s

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
k¼1

Sk � S
� �2s

(4)

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
k¼1

Sk � Gkð Þ2
s

(5)

BIAS ¼ 1
n

Xn
k¼1

Sk � Gkð Þ (6)

where Gk are the gauge observations and G
is the average of the gauge observations; Sk
and S are the satellite estimates (i.e., Ori-CCS
or Adj-CCS) and their average, respectively.
The performance improvement of the Adj-
CCS estimations can be indicated by
increased CORR and by reduced RMSE and
absolute BIAS.

3.1. Spatial Pattern Evaluation

Figure 6 shows the annual average pre-
cipitation for the gauge observations, Ori-
CCS, and Adj-CCS, during the calibration
years (2009–2013) and validation year
(2014). Compared to the gauge observa-
tions, Ori-CCS overestimated precipitation

over northern Chile and underestimated over southern Chile. On the other hand, the Adj-CCS has consis-
tently improved upon Ori-CCS for both calibration and validation periods (Figure 6). Locally, all of the eva-
luation zones have presented consistent improvement as well. As shown in Figure 7, the scatterplots of the
observed annual precipitation at gauged pixels with respect to the Ori-CCS and Adj-CCS are derived for
zone nos. 1, 2, and 3, respectively. Statistically, the spatial pattern improvement over the zones is indicated
by the increased CORRs and the great reduction of RMSEs (mm/yr) and absolute BIASs (mm/yr), respectively
(see Table 1).

Figure 4. The annual average precipitation from gauge data and the
three evaluation zones.
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Figure 5. Seasonal CDFs of areal mean daily gauge and Ori-CCS estimations for the evaluation zones.

Figure 6. Annual precipitation of gauge observation, Ori-CC, and Adj-CCS in (left) calibration and (right) validation years. The evaluation zone nos. 1, 2, and 3 are
highlighted with rectangles from top to bottom.
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In addition, the monthly spatial patterns of the Ori-CCS and Adj-CCS precipitation are assessed. Figures 8 and
9 show the evaluation results from January, April, July, and October. The monthly precipitation averages of
the four months during calibration years exhibit similar spatial pattern changes to those of the annual results.
Over the evaluation zones, the monthly data of Ori-CCS overestimated monthly average precipitation in
zone no. 1 and underestimated in zone nos. 2 and 3. As shown in Table 1, zone no. 3 has averagely the lowest
CORR (0.3) and highest RMSE (94.2mm/month) and absolute BIAS (89.9mm/month) with respect to the
Ori-CCS monthly average. After bias adjustment, the spatial disagreements have been significantly reduced.
The Adj-CCS shows advanced spatial patterns of monthly average precipitation as compared to that of the
gauge observations (Figures 8 and 9). From Table 1, almost all of the CORRs of Adj-CCS for the zones are
increased, and the RMSEs are reduced on average by 90%, 45%, and 64% for zone nos. 1, 2, and 3, respec-
tively. The absolute BIASs for themonths decrease greatly to lower than 1.0mm/month after bias adjustment,
except for April over zone no. 3 (decrease to 28.82mm/month) and July over zone no. 2 (decrease to
15.86mm/month).

For the validation year (2014), the monthly Adj-CCS estimates show improved precipitation spatial patterns
for the four evaluation months, as well. From Figures 8 and 9, the monthly Ori-CCS precipitation shows over-
estimation in zone no. 1 and underestimation in zone nos. 2 and 3 for those four months. The CORRs of the
Ori-CCS monthly precipitation in 2014 are low, with some negative CORRs for zone nos. 2 and 3 (see Table 1).
The RMSEs and absolute BIASs for zone no. 3 are the highest with the averages of 136.7mm/month and
123.6mm/month, respectively. After bias adjustment, each of the four months of Adj-CCS precipitation in
2014 shows distinct spatial pattern improvement, except for zone no. 2 which presents limited changes for
January, April, and October (Figures 8 and 9). Compared to Ori-CCS, Adj-CCS shows reduced RMSEs by
85%, 29%, and 48% on average for zone nos. 1, 2, and 3, respectively (see Table 1). The absolute BIASs for

Figure 7. Scatterplot of the annual precipitation of Ori-CC and Adj-CCS at gauged pixels over the evaluation zones for (left three plots) calibration and (right three
plots) validation years.

Table 1. Statistics for Spatial Pattern Evaluation

Time Scale Statistic

Calibration (2009–2013) Validation (2014)

Zone No. 1 Zone No. 2 Zone No. 3 Zone No. 1 Zone No. 2 Zone No. 3

Ori-CCS Adj-CCS Ori-CCS Adj-CCS Ori-CCS Adj-CCS Ori-CCS Adj-CCS Ori-CCS Adj-CCS Ori-CCS Adj-CCS

Annual CORR 0.91 0.93 0.82 0.94 0.04 0.61 0.87 0.86 0.58 0.79 0.35 0.82
RMSE 676.91 36.83 393.17 137.06 1322.95 315.26 563.65 56.44 624.20 229.71 1285.48 301.80
BIAS 618.10 0.31 �365.92 76.51 �1263.90 46.77 479.29 22.66 �577.91 �120.29 �1210.16 147.07

January CORR 0.91 0.94 0.60 0.75 0.71 0.73 0.87 0.86 �0.21 �0.04 0.33 0.71
RMSE 133.29 12.69 11.39 7.13 59.12 20.36 230.26 35.69 21.32 20.73 114.98 61.57
BIAS 121.28 �7.96 �10.11 �1.51 �56.76 �8.84 199.88 16.28 �18.73 �17.81 �105.10 �50.88

April CORR 0.83 0.72 0.62 0.76 0.21 0.42 0.52 0.35 �0.26 �0.16 0.36 0.58
RMSE 21.70 2.61 17.72 12.67 97.59 37.42 59.70 10.63 53.76 53.85 117.16 65.18
BIAS 17.94 �1.50 �14.59 �4.73 �94.37 �28.82 49.28 �1.69 �43.13 �38.29 �113.79 �55.42

July CORR 0.11 0.24 0.74 0.88 0.17 0.34 0.68 0.62 0.65 0.80 �0.54 �0.02
RMSE 14.25 3.17 84.60 39.07 142.42 54.13 11.31 1.56 138.64 53.61 215.76 94.54
BIAS 12.25 �1.23 �78.44 �15.86 �136.01 �7.01 6.39 0.50 �129.73 �32.07 �191.94 21.52

October CORR 0.71 0.78 0.59 0.85 0.10 0.63 0.79 0.46 0.52 0.71 �0.44 �0.28
RMSE 31.11 1.00 17.32 13.33 77.67 23.79 46.05 4.71 26.73 41.50 98.83 64.49
BIAS 26.34 0.48 �9.94 3.23 �72.65 �2.57 36.83 �0.69 17.68 26.93 �83.48 �8.25
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Figure 8. (top to bottom) The same as Figure 6 but for monthly precipitation of January, April, July, and October, respectively.
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the months in 2014 decrease on average by 95%, 65%, and 81%, correspondingly, after bias adjustment.
However, these changes are not significant as those from the average results during the calibration years
(Figure 9 and Table 1).

3.2. Time Series Evaluation
3.2.1. Monthly Time Series
In the monthly precipitation time series evaluation, plots of gauge observation (red), Ori-CCS (green), and
Adj-CCS (blue) over zone nos. 1, 2, and 3 for the calibration and validation years are shown in Figure 10.
Compared to the reference gauge observations, themonthly areamean precipitation of Ori-CCS shows systema-
tic biases over the three zones. For zone no. 1, consistent overestimation of monthly precipitation by Ori-CCS is
observed during 2009–2014; the RMSEs and BIASs are over 38.5 and 23.9mm/month, respectively. As for zone
nos. 2 and 3, Ori-CCS underestimates the areal meanmonthly precipitation; the RMSEs are over 71.0mm/month
with significant negative BIASs of �125.2mm/month. The CORRs at these zones, however, are very high (close
to or exceeding 0.90) during the calibration and validation periods. These high CORRs indicate that the temporal
structures of the monthly Ori-CCS estimates are highly consistent with that of gauge observations.

After the adjustment, the Adj-CCS precipitation series present great improvement in data quality. During
2009–2014, the Adj-CCS monthly area mean of precipitation over zone no. 1 is reduced, and over zone
nos. 2 and 3 are increased (Figure 10). These changes lead to good agreement of Adj-CCS monthly precipita-
tion estimates to gauge observations. As a result, the RMSEs and absolute BIASs of monthly precipitation
during the calibration period decrease on average by 47% and 86%, respectively, and for the validation
period the RMSEs and absolute BIASs are reduced by 69% and 90%, respectively. The CORRs of the monthly
area mean precipitation stay almost the same during both periods.

Figure 9. (top to bottom) The same as Figure 7 but for monthly precipitation of January, April, July, and October, respectively.
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3.2.2. Daily Time Series
The overall evaluation is also extended to the daily scale. The CORRs, RMSEs, and BIASs of Ori-CCS and
Adj-CCS areal mean daily estimates over each zone are calculated with respect to calibration and validation
periods. In order to evaluate the hits and misses of satellite estimation, we further estimate the probability of
detection (POD), false alarm ratio (FAR), and Heidke skill score (HSS) for these daily series. The estimations of
POD, FAR, and HSS follow Su et al. [2011] and Hyvarinen [2014]. All of the statistics are shown as Table 2.

According to Table 2, the RMSEs of Ori-CCS daily areal mean estimates over the zones range from 2.31 to
9.71mm/d, and the absolute BIASs range from �4.76 to 1.13mm/d, with the CORRs of about 0.70. For PODs,
they are high (about 0.90) over zone no. 1 for the calibration and validation years and are lower (0.71–0.81) over
zone nos. 2 and 3. The FARs and HSSs tend to decrease over zone nos. 1 to 3, with higher HSSs (reaching 0.42)
for zone no. 1 and low FARs (to 0.06) for zone no. 3. After bias adjustment, biases are reduced significantly in the
daily precipitation series for 2009–2014. It shows that the absolute BIASs of the Adj-CCS estimates over the three
zones decrease greatly to less than 0.60mm/d. Zone no. 1 presents largely reduced RMSEs for the evaluating
periods (by over 65%) due to bias adjustment, while zone nos. 2 and 3 show limited improvement in RMSEs.
Furthermore, the CORRs, PODs, FARs, and HSSs remain almost unchanged after the correction, except for zone
no. 1 which presents slightly decreased PODs and FARs and increased HSSs (Table 2).

Figure 11 shows the year-by-year accumulated daily precipitation time series from the gauge observations
(red), original satellite estimations (green), and bias-adjusted estimations (blue) for the period of 2009–2014
for the three zones. Ori-CCS overestimates over zone no. 1 and underestimates over zone nos. 2 and 3. After
the adjustment, the cumulative precipitation time series of Adj-CCS are consistent with those of gauge obser-
vations. This indicates that the proposed QM approach is effective for adjusting the systematic bias of SPEs for
both calibration and validation years over different regions.

Additionally, the number of rainy days (NRDs), RMSE, and BIAS with respect to Ori-CCS and Adj-CCS daily esti-
mations for different precipitation amount ranges are analyzed over the zones. As shown in Figure 12, zone
no. 1 has a high NRD from Ori-CCS (green bar) for the nonrainy days (indicating false alarms), and the bias

Figure 10. Monthly areal mean precipitation series of gauge observation, Ori-CCS, and Adj-CCS over the evaluation zones during (left column) calibration and (right
column) validation periods.
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adjustment has reduced the NRD as well as that from Ori-CCS for the rainy days with observed rainfall rate of
less than 1mm/d. This is the main reason why the FARs and PODs for zone no. 1 decrease (Table 2). For zone
nos. 2 and 3, the top NRDs of Ori-CCS are estimated for the wet days with rainfall amount of less than
10mm/d, although the Ori-CCS missed a large number of rainfall events compared to the NRDs estimated
from gauge observations (red bars). However, all of the NRDs from Ori-CCS stay almost unchanged for the
two zones after bias adjustment, which helps to explain the stable PODs, FARs, and HSSs for zone nos. 2

Figure 11. Cumulative precipitation of gauge observation (red), Ori-CCS (green), and Adj-CCS (blue) over the evaluation zones for 2009–2014.

Table 2. Statistics for Daily Time Series Evaluation

Evaluation Zone Statistic

Calibration (2009–2013) Validation (2014)

Ori-CCS Adj-CCS Ori-CCS Adj-CCS

Zone no. 1 CORR 0.72 0.67 0.78 0.75
RMSE 3.14 0.93 2.31 0.55
BIAS 1.13 �0.15 0.85 �0.06
POD 0.90 0.84 0.86 0.75
FAR 0.45 0.36 0.48 0.42
HSS 0.42 0.53 0.31 0.38

Zone no. 2 CORR 0.67 0.68 0.66 0.67
RMSE 5.67 5.87 8.19 8.01
BIAS �0.96 0.15 �2.23 �0.60
POD 0.72 0.71 0.71 0.71
FAR 0.26 0.25 0.21 0.21
HSS 0.30 0.30 0.20 0.19

Zone no. 3 CORR 0.65 0.70 0.75 0.75
RMSE 7.77 6.97 9.71 7.95
BIAS �3.35 �0.23 �4.76 �0.54
POD 0.74 0.74 0.81 0.81
FAR 0.06 0.06 0.09 0.09
HSS 0.20 0.20 0.24 0.24
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and 3. Zone no. 1 shows consistent reductions in the RMSEs and absolute BIASs for Adj-CCS as the observed
rainfall amount increases. In comparison, the bias adjustment has decreased RMSEs of satellite estimation
particularly for the heavy precipitation (rainfall rate>30mm/d) for both zone nos. 2 and 3. Similarly, the abso-
lute BIASs have been largely reduced as well.

4. Discussion and Conclusions

The QM-GW method is proposed to adjust the bias of PERSIANN-CCS using localized gauge observation over
Chile. Our experiments show that the spatial patterns of gauge-adjusted estimations (Adj-CCS) over Chile present
good agreement with the gauge observations over both calibration and validation periods, especially at annual
scale (Figures 6–9 and Table 1). The adjusted precipitation time series have shown considerably reduced biases
(Figures 10–12 and Table 2). In the dry north (as zone no. 1), the NRD gets improved for the no rain periods, and
significant decreases in RMSEs and BIASs are shown. In the rainy south (as zone nos. 2 and 3), the biases in heavy
(extreme) precipitation have been reduced to a large extent. These improvements can support the potential
application of PERSIANN-CCS precipitation estimates in flood and drought analysis as well as water resource
management in Chile. This is especially the case for those areas with limited or lacking gauge coverage
(Figure 2). For these regions the bias-adjusted PERSIANN-CCS can provide reliable precipitation estimates.

From the results of the validation study, one can conclude that the QM-GW bias adjustment approach is cap-
able of removing systematic bias in future SPEs. This is demonstrated in Figures 10 and 11; the proposed

Figure 12. The (top) NRDs, (middle) RMSEs, and (bottom) BIASs of Ori-CCS and Adj-CCS daily estimations for different rainfall amounts over the evaluation zones
during 2009–2014.
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approach brings consistent bias reduction in the PERSIANN-CCS precipitation (monthly and daily) during both
the calibration and validation periods over the evaluation zones. Additionally, the spatial pattern validation of
the annual Adj-CCS precipitation in 2014 shows comparable improvement with that of the annual mean Adj-
CCS precipitation from the calibration period (Figures 6 and 7). These results indicate that the methodology
is effective in correcting the consistent biases in SPEs without simultaneous gauge observations. This property
of the bias adjustment framework is related to the distribution-based QM method. The QM method maps
adjusted SPEs based on the transformations from the CDFs of historical SPEs and gauge observations. Under
stationary assumption for the CDFs from the historical events being usable for future events, the same CDFs
are used for future (validation) events. However, care should be taken in applying the same QM farther into
the future, as CDFs may be altered by the impacts of climate variability and change. The nonstationary process
of future climate poses a great challenge as well as an opportunity for follow-up studies.

However, some random errors (including misses and false alarms) still exist in the Adj-CCS precipitation series
at the local time steps of 2009–2014. These random errors cause very limited improvement of the CORRs,
RMSEs, PODs, FARs, HSSs, and NRDs in daily precipitation time series, especially at zone nos. 2 and 3
(Table 2 and Figure 12). It indicates that the QM-GW framework cannot effectively remove the day-by-day
random errors in PERSIANN-CCS estimates. This issue can be explained by the probability distribution
property of the QM approach. According to the QM approach, the original satellite rainfall rate is generally
corrected to a historical rainfall rate from gauge observations, in which the two rainfall rates share the same
quantile from the CDFs at a neighboring CDF box. It means that the QM correction takes only the probability
distribution of precipitation into consideration but neglects day-by-day adjustment with simultaneous obser-
vations. Therefore, the QM approach can help to correct the biases in the overall magnitude of precipitation
rather than to reduce the local time random errors. Particularly, the misses and false alarms for satellite
estimation can be rarely corrected using the model. The random errors might change with the year-to-year
fluctuation in climatology. These can also help to explain why the model tends to lose effectiveness at time
scales less than or equal to a month shown especially in the monthly spatial pattern evaluation (Figure 9 and
Table 1). The limitation of QM method was also acknowledged previously [Jie et al., 2013; Mueller and
Thompson, 2013]. However, we believe that if the simultaneous ground observations are used as reference
in further adjustment, the random errors can be largely reduced. In our future work, efforts will focus on
further improvement of the Adj-CCS precipitation data quality by correcting the random errors.

5. Future Prospect

According to our findings, the QM-GW approach has resulted in effective reduction of the systematic biases
in SPEs by taking advantage of the distribution properties of historical satellite and gauge data. It can be pro-
jected that the framework is able to be applied in other regions to improve satellite-based precipitation pro-
ducts. There are some requirements that need to be considered in future applications.

First, a relatively dense gauge network is required. According to the proposed framework, the study area has
been divided into 1°×1° grid boxes for CDF calculation. If the gauge network is sparse, most of the boxes may
not include even one rain gauge for reference. This will highly reduce the reliability of the calibrated model
and bias-adjusted data. Thus, evenly distributed rain gauges with relatively high network density are
recommended. Second, enough high-quality historical precipitation data are needed for model calibration.
Specifically, the framework works based on the precipitation CDFs, calculated using satellite and gauge data
for each season. In future applications, the use of monthly CDFs will further improve the bias adjustment.
While the total amount and data accuracy of considered rainfall samples can impact the uncertainty of
CDFs, a larger number of high-quality rainfall data will result in more reliable CDFs for bias adjustment.
Last but not least, due to the stationary assumption of the CDFs, model recalibration using the precipitation
data records for last few years should be considered as the climate changes in the future.
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