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More than ever in the history of science, 

researchers have at their fingertips an 

unprecedented wealth of data from continu-

ously orbiting satellites, weather monitoring 

instruments, ecological observatories, seismic 

stations, moored buoys, floats, and even 

model simulations and forecasts. With just an 

internet connection, scientists and engineers 

can access atmospheric and oceanic gridded 

data and time series observations, seismo-

graphs from around the world,  minute-  by- 

 minute conditions of the near-Earth space 

environment, and other data streams that 

provide information on events across local, 

regional, and global scales. These data sets 

have become essential for monitoring and 

understanding the associated impacts of 

geological and environmental phenomena 

on society.

This increasing amount of data has led 

us into the era of “big data,” or the “fourth 

paradigm,” as described in essays based on 

Jim Gray’s vision of data science in the book 

The Fourth Paradigm:  Data-  Intensive Scientific 

Discovery [Hey et al., 2009]. Big data, how-

ever, brings an inherent problem: How can 

researchers extract usable information from 

such overwhelming quantities of numbers 

and variables?

To help better understand, describe, and 

model data, scientists need an effective 

means of analyzing massive amounts of it. 

Doing this efficiently involves, at its heart, the 

use of computer programs, machine learning, 

and statistical techniques that view and 

analyze Earth and environmental events as 

“objects.”

Object-Oriented Analysis

An object can be thought of as an iden-

tified item, event, or instance with distinct 

attributes and statistics representing the 

existence of the entity in space and/or time—

for example, a storm, an earthquake, an 

ecological region, or a sea surface tempera-

ture anomaly. The attributes and statistics 

associated with these objects can be 

analyzed using statistical modeling algo-

rithms to identify structural relationships 

between different characteristics, as well as 

time periods corresponding to different 

physical systems and phenomena interac-

tions, leading to enhanced knowledge of 

what trends the data hold.

Specifically,  object-  oriented data analysis 

can be thought of as the study of the statistics 

of populations of objects. The analysis can 

include defining objects contained within 

digital images or photographs, gridded data 

sets, and animations, which allow for the 

objects to be analyzed over time and space.

If such algorithms are run in a computer 

environment designed to home in on 

characteristics of objects or events of interest, 

then the data can be crunched even more 

efficiently, allowing insights from big data to 

be revealed at a quicker pace. Such machine 

learning evolved from artificial intelligence 

research and focuses on developing models 

that are based on the behaviors and charac-

teristics of empirical data. Capturing the 

behaviors and characteristics from data and 

determining their underlying probability 

distributions can provide new knowledge 

regarding the object or characteristic of 

interest. Typically, the properties or “true” 

underlying probability distributions of the 

observed variable of interest are not explicitly 

known. However, by seeking to define or 

describe these underlying probability 

distributions, data mining can help scientists 

learn or discover unknown properties and 

patterns contained in the data. This is 

particularly useful with complex systems and 

data sets.

The  object-  oriented approach has been 

widely used in various Earth and environ-

mental science fields, from researching 

geographical terrain morphology [Mitasova 

et al., 2012] to determining better methods for 

verifying the forecasts of numerical weather 

prediction (NWP) models [Davis et al., 2006a, 

2006b; Mittermaier and Bullock, 2013] and 

tornado forecasting [Clark et al., 2012]. The 
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Fig. 1. A connected four-dimensional atmospheric river, or “precipitation object,” extracted from 
the PostgreSQL database. The atmospheric river originated in the eastern Pacific and affected the 
western United States from 28 to 30 December 2005.
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recent work by Mitasova et al. [2012] uses 

 object-  based methods with lidar terrain data 

to scientifically visualize landscapes and 

landforms.

In the atmospheric sciences, Davis et al. 

[2006a, 2006b] describe the challenges 

encountered with traditional verification 

methods used with NWP models, which 

involve determining model performance 

scores (e.g., based on  pixel-  to-  pixel compari-

sons, probabilities of accurately detecting 

weather that does occur, or the rate of false 

alarms), and they demonstrate how geometric 

and  object-  oriented attributes, such as shape, 

orientation, and size of meteorological fields 

such as precipitation, provide more informa-

tive results that help ease efforts to validate 

the performance of NWP models.

The focus of Davis et al. [2006a, 2006b] is 

verifying and describing the performance of 

model forecasts compared to observations 

using  object-  based methods.  Machine- 

 learning algorithms can then be used to learn 

from these populations of precipitation object 

attributes to better understand the underlying 

processes associated with the evolution of the 

population. As a result, state-of-the-art 

object-relational databases and  machine- 

 learning approaches may provide new and 

creative research insights and allow scientists 

to extract enhanced information from data.

Building an Object-Oriented Analysis Tool: 
A Case Study With Precipitation Data

Object-  oriented approaches are becoming 

increasingly valuable for studying climate and 

weather. In particular, precipitation, or the 

lack thereof, with its direct connection to the 

hydrological cycle, is not only the most 

common atmospheric phenomena affecting 

society but also one of the most commonly 

monitored variables. In recent decades, it has 

become possible to observe precipitation 

processes in detail at near-global coverage, 

through advanced satellite sensor platforms, 

sophisticated retrieval algorithms, the use of 

 ground- based radars, and integrated 

observational gauge networks.

However, even though there have been 

significant advances in observation, mod-

eling, and prediction over the last few de-

cades, there is still a significant amount of 

information that is unknown about the fun-

damental processes that govern shifts in 

climate, which cause widespread variability 

in drought and/or extreme flooding [Bader 

et al., 2008]. To provide a new perspective on 

these governing processes, the researchers at 

the Center for Hydrometeorology and Remote 

Sensing (CHRS) at the University of California, 

Irvine designed an approach embracing the 

“fourth paradigm” as envisioned by Jim Gray.

CHRS’s  data-  intensive  object-  oriented 

approach allows for the accomplishment of 

three objectives: (1) transformation or 

segmentation of the precipitation data into 

decipherable units—large-scale storm 

systems such as typhoons, hurricanes, 

atmospheric rivers, or even a sustained but 

gentle rainfall—with defined event character-

istics; (2) organization of the data into an 

advanced database that contains the 

segmented precipitation objects and their 

associated characteristics; and (3) applica-

tion of  machine-  learning algorithms for 

learning from the data.

How does this work? In computer science, 

a data point can be represented on a  three- 

 dimensional ( 3-D) grid (latitude, longitude, 

and time) as a volumetric pixel or “voxel,” 

which has recently been increasingly used 

for graphical applications such as  3-D terrain 

features in computer games and medical 

imaging. In CHRS’s method, instead of 

employing the traditional data analysis 

approaches, which look at information at 

each data point within a data set, scientists 

focus on using an  object-  based connectivity 

algorithm. This algorithm organizes data 

points into  4-D objects (latitude, longitude, 

time, and intensity) that better characterize 

the events and their structure.

The algorithm is designed to ensure that all 

voxels of precipitation estimates are con-

nected in both space and time, allowing for 

the feature to be analyzed as a  4-D object (for 

example, the atmospheric river in Figure 1, 

identified by the algorithm as a precipitation 

object). In other words, at each time step, an 

object consists of connected voxels in direct 

neighborhood locations during that time step 

and also in the previous and future time 

steps. Organizing the data into a  4-D object 

helps one to visualize the dynamical changes 

to the precipitation object in time and space, 

enabling empirical characteristics to be 

calculated for each object.

This  higher-  dimensional approach is a 

departure from the traditional time series 

and grid-based methods of analyzing pre-

cipitation because it segments different 

objects into different  cross-  relational data 

sets. This  object-  relational database, called 

 PostgreSQL, is searchable and can handle 

complex search queries—including geo-

graphical location, object characteristics, and 

temporal considerations—which allows for 

manipulation and subsetting of the data in a 

meaningful way.

The data that have been used to test this 

approach are the near-global precipitation 

estimates generated by an algorithm called 

the Precipitation Estimation from Remotely 

Sensed Information Using Artificial Neural 

Networks ( PERSIANN), which processed 

observations from 60°N to 60°S globally from 

1 March 2000 to 1 January 2011 every hour, at 

0.25° resolution in both latitude and longi-

tude. The estimates from  PERSIANN are 

stored in a  PostgreSQL database hosted at 

CHRS.  PERSIANN uses artificial neural 

networks to learn on its own and estimate 

precipitation rates from infrared geostationary 

satellite data [Sorooshian et al., 2000; Hsu 

et al., 1997].

The connectivity algorithm is then applied 

to the  PERSIANN data to segment out 

precipitation events. To remove a huge 

number of small precipitation events for this 

application, three criteria were chosen for 

an object to be considered an event. The 

algorithm applied a minimum threshold of 

precipitation intensity at 1 millimeter per hour 

(mm/h), applied a duration threshold of 

precipitation at 24 hours (i.e., the precipita-

tion event must exist for at least 24 hours), 

and required connectivity to neighboring 

voxels along at least one face of the voxel’s 

cube (which means that if two voxels have 

one face connection, they are grouped into 

the common object). The current version of 

the data set contains 55,173 precipitation 

objects worldwide for the nearly  10-year 

period. For access to the files containing the 

55,173 objects and additional documentation, 

visit http:// chrs .web .uci .edu/  research/  voxel/ 

 intro .html.

A descriptive statistics algorithm is then 

applied to all objects contained within the 

database. These descriptive statistics are 

stored in an N × d “design” matrix, where N is 

the number of objects and d is the number 

of dimensions (or features/characteristics). 

In statistics the design matrix contains the 

explanatory variables to be used in statistical 

models. Characteristics in the N × d matrix 

include: volume (in cubic meters), maximum 

precipitation intensity (mm/h), average 

intensity (mm/h), duration (h), average speed 

(kilometers per hour), and center of mass, 

or “centroid” (latitude and longitude 

coordinates).

More characteristics of the precipitation 

objects will be added to the database in the 

future, such as their axis angles, aspect ratios, 

curvature, track, connectivity index, area 

index, shape index [Agha Kouchak et al., 2011], 

time of year (season), atmospheric wave 

number that describes the large-scale ener-

getic properties of the atmosphere surround-

ing the feature, El  Niño−  Southern Oscillation 

phase, meteorological classification (e.g., 

tropical cyclone or extratropic cyclone 

mesoscale convective system), etc. The N × d 

matrix is in optimal form for machine 

learning, experimental designs, and statistical 

modeling in that there is no limit to the 

number of variables that can be added. This 

optimal form would allow time periods and 

statistics to be compared with various climate 

indices or indicators to diagnose and/or deter-

mine possible physical processes governing 

the precipitation object characteristics.

From Big Data to Big Discoveries

Ever-  increasing amounts of data are out 

there, waiting for interpretation. Learning 

from these data in a manner that is organized 

and interpretable requires enhanced 

computation abilities to detect patterns within 

data. This will enable scientists and decision 

makers to gain greater confidence in newly 

discovered knowledge of the fundamental 

causes of change to the environment. The 

advancement of such fundamental knowl-

edge will assist in quantifying how these 

http://chrs.web.uci.edu/research/voxel/intro.html
http://chrs.web.uci.edu/research/voxel/intro.html


© 2013. American Geophysical Union. All Rights Reserved.

Eos, Vol. 94, No. 32, 6 August 2013

changes affect society and may help identify 

future sustainability options that can be used 

for the development of adaptation and 

mitigation strategies to protect society.

In the case of CHRS’s efforts, the informa-

tion differentiated and  cross-  correlated within 

the  PostgreSQL database of remotely sensed 

precipitation objects will support other 

potential applications in many science and 

engineering fields, including climate, 

oceanography, and weather studies; the 

development of new hypotheses around 

global precipitation; and further development 

of methods, models, and knowledge within 

different disciplines. The approach can be 

seen as an attempt to bridge computational 

sciences and Earth sciences and to provide 

new data sets to be explored by the various 

communities as they work to solve world 

problems related to environmental change. 

This, and similar endeavors in other fields, is 

where big data can take scientific discovery as 

a whole into a new paradigm of integrated 

 data-  intensive investigation and research.
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