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ABSTRACT

By employing wavelet and selected features (WSF), median merging (MM), and selected curve-fitting (SCF)

techniques, the Precipitation Estimation from Remotely Sensed Imagery using an Artificial Neural Networks

Cloud Classification System (PERSIANN-CCS) has been improved. The PERSIANN-CCS methodology

includes the following four main steps: 1) segmentation of satellite cloud images into cloud patches, 2) feature

extraction, 3) classification of cloud patches, and 4) derivation of the temperature–rain-rate (T–R) relationship

for every cluster. The enhancements help improve step 2 by employing WSF, and step 4 by employing MM

and SCF. For the study area herein, the results show that the enhanced methodology improves the equitable

threat score (ETS) of the daily and hourly rainfall estimates mostly in the winter and fall. The ETS percentage

improvement is about 20% for the daily (10% for hourly) estimates in the winter, 10% for the daily (8% for

hourly) estimates in the fall, and at most 5% for the daily estimates in the summer at some rainfall thresholds.

In the winter and fall, the area bias is improved almost at all rainfall thresholds for daily and hourly estimates.

However, no significant improvement is obtained in the spring, and the area bias in the summer is also greater

than that of the implemented PERSIANN-CCS algorithm.

1. Introduction

Rainfall estimation at high spatial and temporal res-

olutions is beneficial for research and applications in

areas such as weather, climate, precipitation forecasting,

hydrology, water resources management, flood fore-

casting, and agriculture (Anagnostou 2004). Flooding

from localized intense precipitation is one of the most

serious natural disasters. According to the International

Strategy for Disaster Reduction (ISDR) program of the

United Nations reports, 8 out of the top 10 most deadly

natural disasters in 2007 were flood related. Hence, the

accurate monitoring of precipitation is imperative for

improving flood and operational weather forecasting

systems (Hsu et al. 2009; ISDR 2008).

Several high-resolution satellite precipitation estima-

tion (HRSPE) algorithms, based on several different

approaches, are already in routine use in research and

applications: the Climate Prediction Center (CPC)

morphing technique (CMORPH; Joyce et al. 2004),

Tropical Rainfall Measuring Mission (TRMM) Multi-

satellite Precipitation Analysis (TMPA; Huffman et al.

2007), Naval Research Laboratory (NRL; Turk and

Miller 2005), Precipitation Estimation from Remotely

Sensed Imagery using an Artificial Neural Networks

(PERSIANN; Sorooshian et al. 2000), and PERSIANN

Cloud Classification System (PERSIANN-CCS; Hong

et al. 2004). A HRSPE algorithm can be categorized

based on the underlying sensors and platform instru-

mentations. These sensors include active (radar) and

passive microwave (MW) measurements obtained from

low Earth orbit (LEO), as well as visible (VIS) and in-

frared (IR) imagery of geostationary (GEO) satellites.

Although MW signals can provide the microphysical

information about clouds, the temporal resolution from

LEO platforms is not sufficient for high temporal ap-

plications. On the other hand, the IR sensors on board

the GEO platform can provide high temporal observation.
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However, the IR observations are only correlated to the

cloud-top temperature, and are not always physically

related to the microphysical properties of clouds (Adler

et al. 1994). To achieve higher accuracy, many HRSPE

algorithms use a combination of IR satellite data with

MW observations and/or ground-based observations for

further calibration (Adler et al. 1994; Turk and Miller

2005; Huffman et al. 2007).

Rainfall estimation algorithms using infrared data can

also be categorized into the following three groups

depending on the method used for information extrac-

tion from infrared cloud images: (a) pixel-based, (b)

local texture–based, and (c) patch-based algorithms

(Hong et al. 2004). In pixel-based algorithms, a rain rate

(either fixed or variable) is assigned to every pixel of the

cloud and just that pixel alone is considered. Cloud local

texture–based techniques calculate the pixel rain rates

by considering a range of the neighborhood pixel cov-

erage. Cloud patch-based techniques assign a rain rate

to each pixel by considering the cloud coverage under

either a specified temperature threshold or specific cri-

teria. The original PERSIANN algorithm (Hsu et al.

1997; Sorooshian et al. 2000) uses the local texture–

based method and then extends to the PERSIANN-CCS,

which uses cloud patch-based techniques. Mainly, the

PERSIANN-CCS algorithm uses cloud patch classifica-

tion to provide 100 representations (groups) of different

cloud patch types. For each of them, a temperature–

rain-rate (T–R) relationship is obtained (in the training

mode). Therefore, to estimate rainfall for each input

cloud patch, the cloud patch first is compared to the

representations (groups), and the most similar cloud-

type representation is selected and the corresponding

T–R is exploited to assign rainfall to the patch. Further-

more, the PERSIANN-CCS uses an exponential curve

fitting and applies the probability matching method

(PMM) (Atlas et al. 1990) to all patches to obtain the

T–R for each cloud-type representation. Because the

cloud patches are clustered based on cloud-top temper-

atures, it is possible that some patches, which have similar

cloud-top information but different microphysical prop-

erties, are grouped in a cluster. It is also possible that

some patches are incorrectly classified to a cluster be-

cause of imperfect classification and features extraction.

In this paper, an enhanced version of the existing

PERSIANN-CCS algorithm is developed by exploiting

wavelet and selected features (WSF), median merging

(MM), and selected curve-fitting (SCF) techniques. The

WSF approach increases the performance of the cloud

patch classification and the MM and SCF methods im-

prove the T–R relationship for each group representing

different cloud types. Note that by incorporating wave-

let features, we obtain more texture information from

cloud-top temperatures, and also by using a feature

selection method, the optimal and effective similarity

measures (features) are selected to increase the per-

formance of cloud patch clustering. Also, instead of

an exponential curve fitting, which is used in the

PERSIANN-CCS, a selected curve fitting is utilized to

select a proper curve-fitting method to fit the T–R

obtained from applying the MM. Furthermore, the im-

pacts of the improper patches for obtaining the T–R re-

lationship are reduced by applying the MM technique;

that is, the MM technique improves the T–R relationship

for each group. As a result, an increase in the precipi-

tation estimation accuracy is obtained by increasing the

performance of cloud patch classification (effective cloud-

type representations) and also creating a more accurate

T–R for the clusters.

2. Methodology

The PERSIANN-CCS methodology incorporates

four main steps to derive precipitation estimates. The

first step is to segment the satellite IR cloud images into

patches by using a region-growing method (Gonzalez

and Woods 2007). The second step is to extract from the

segmented cloud patches features such as statistics, ge-

ometry, and texture at different brightness temperature

thresholds. Note that throughout the terms temperature

and brightness temperature are used to refer to the lat-

ter. The next step is to categorize the cloud patches into

separate clusters using a self-organizing map (SOM),

and the final step is to obtain a relationship between the

brightness temperature of cloud patches and the rain

rate for every cluster by applying PMM and an expo-

nential curve fitting (Hong et al. 2004).

We have augmented the PERSIANN-CCS while in-

cluding all of the above steps, with the WSF, MM, and

SCF techniques. The implemented PERSIANN-CCS

with the above-mentioned techniques are being referred

to as mCCS-WMS. We have augmented step 2 by em-

ploying WSF and step 4 by employing the MM and SCF

methods.

Figure 1 shows a block diagram of the mCCS-WMS

algorithm in the training and testing modes. The goal in

the training mode is to obtain a T–R relationship for

every cluster. In this mode, the radiance measurements

from the Geostationary Operational Environmental

Satellite-12 (GOES-12) are first calibrated into bright-

ness temperature values. A region-growing segmenta-

tion method (Gonzalez and Woods 2007) is used to

segment the clouds into patches in the segmentation part

(step 1). In the segmentation procedure, the minimum

brightness temperature (Tbmin) of the clouds is first

determined, and then used as a seed. Then, Tbmin is
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incremented by 1 K, and a new set of pixels is identified.

If these pixels are neighbors of a seed, then they will be

considered as the area of that seed; otherwise, those

pixels are treated as new seeds. The threshold of the

temperature is iteratively increased to a maximum of

255 K. Afterward, a morphological operation is applied

to remove/merge the tiny regions (Gonzalez and Woods

2007; Hong et al. 2004).

In the feature extraction part (step 2), for every

patch and at Tb thresholds of 220, 235, and 255 K, the

PERSIANN-CCS extracts statistical features that can

be categorized into three groups: the minimum and mean

temperatures (coldness feature), patch area and patch

shape index (geometry), and standard deviation (std

dev), including the mean of the local standard deviation,

standard deviation of the local STD, gradient, and gray-

image texture.

In addition to the PERSIANN-CCS features, addi-

tional texture features are obtained from applying a

wavelet transform. The wavelet transform is one of the

powerful tools in texture analysis; it analyzes localized

variations of energy and signal within a time series or the

content of images. For instance, in a 1D time series

wavelet analysis, the time series is decomposed into a

time–frequency space, so one can find out both the

principal modes of variability and their variations in

time (Torrence and Compo 1998). In a 2D image wavelet

analysis, a 1D wavelet transform is first performed along

the horizontal direction x, and then along the vertical

direction y. In the first level of the decomposition, the

given image is decomposed into one low-pass approxi-

mation and three added-detail images, which contain

high-frequency information of the image in the vertical,

horizontal, and diagonal directions. In the next level, the

decomposition is repeated and performed in the low-

pass approximation subimage resulting from level 1.

Using this process, the wavelet analysis provides the

decomposition of an image into different frequency

subbands while capturing localization information both

in the spatial and frequency domains (Burrus et al.

1997).

To obtain the wavelet coefficients and also wavelet

features, a wavelet transform, with a Daubechies mother

wavelet (Burrus et al. 1997), is applied to each pixel of

the original IR image (before segmentation) using a 7 3 7

sliding window. The sliding window is decomposed into

seven wavelet coefficient subbands (horizontal, vertical,

and diagonal detail coefficient subbands for levels 1 and

2, along with an approximation coefficient subband). By

calculating the mean and standard deviation of the co-

efficients’ energy for each of the seven subbands, 14

corresponding coefficient values are obtained for each

pixel of the IR image. The wavelet features for each

patch are the average of these values corresponding to

FIG. 1. The PERSIANN-CCS WMS algorithm in the training and testing modes.
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the pixels covered by the patch at different threshold

levels. Because we have three threshold levels (220, 235,

and 255), the wavelet features are 14 3 3 5 42.

Figure 2a shows an example of the brightness tem-

perature of the infrared clouds in the area of study at

1245 UTC 4 February 2008. The corresponding mean of

the wavelet coefficients’ energy for the horizontal detail

in level 1, vertical detail in level 2, and diagonal detail in

level 2 are depicted in Figs. 2b–d, respectively. As these

figures show, the high wavelet coefficients are related

to the high variation in brightness temperature of the

clouds (in different orientations). Note that the level 2 of

the decomposition provides more high-frequency vari-

ations. This figure also shows that more variation occurs

around the big patch, especially in level 1. We see some

variation in the center of the patch in level 1 that does

not exist in level 2; this means that the center of the patch

has smooth variation compared to some parts around of

the patch. Thus, we can attain different degrees of detailed

information and variation of the IR cloud-top tempera-

ture by using the wavelet coefficients.

To have effective and optimal features, we apply a

feature selection method to the wavelet features together

with the PERSIANN-CCS features. Seven features are

selected from the PERSIANN-CCS and four from the

wavelet features, that is, a total of 11 features are

exploited for the mCCS-WMS algorithm. These wavelet

and PERSIANN-CCS selected features are called

wavelet and selected features (WSF). Note that the

feature selection method is based on the entropy index

evaluation, where different feature sets are generated by

a genetic algorithm and the best feature set (the one with

the lowest entropy index) is selected (Mahrooghy et al.

2011). The entropy index checks if a feature (or a feature

set) provides relevant and useful information.

To classify the cloud patches (step 3), a SOM artificial

neural network is employed. In our algorithm, a 10 3 10

unit map with a hexagonal structure is used for cluster-

ing (Kohonen 1982). Figure 3 depicts the process of the

training and testing modes of the SOM. In the training

mode, the input training pattern is used to adjust the

weights of the clusters such that the weights of the winner

cluster, along with its neighbors (within the hexagonal

graph), are updated. In the testing mode, the most

similar cluster to the input pattern (with features of

the input patch) is selected as a winner cluster, and the

FIG. 2. (a) GOES-12 cloud-top brightness temperatures at 1245 UTC 4 Feb 2008, (b) mean of the wavelet coefficients’

energy for the horizontal detail in level 1, (c) the vertical detail in level 2, and (d) the diagonal detail in level 2.
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corresponding temperature–rain-rate graph for that clus-

ter (which is explained in the next paragraph) is ex-

ploited for rainfall estimation.

In step 4, a T–R curve is assigned to every cluster in

the training mode. To acquire this curve, first a T–R

relationship is obtained for each cluster, and then a

curve-fitting technique is employed to fit this T–R re-

lationship. To assign a characteristic T–R to each cluster,

a MM technique is used. First, a PMM is applied to each

individual patch of the cluster, that is, the T–R re-

lationship for each single patch is identified (depicted as

the dashed lines in Fig. 4). The median rain rate at each

temperature is obtained from all of the patch T–R values

in the cluster corresponding to that temperature (dots in

Fig. 4). The MM technique reduces the impact of any

improper patches that may have been introduced as a

result of imperfect classification and features extraction,

as well as a lack of enough information of the cloud or

other factors. In other words, although the IR observa-

tions obtained by IR sensors on board the GEO plat-

form can have high temporal resolutions, they are only

correlated to the cloud-top temperature and are not

always physically related to the microphysical properties

of clouds. Therefore, it is possible that some patch clouds,

which have the same cloud-top information (features)

but differ in terms of their microphysical properties (i.e.,

their corresponding T–R relationship would be differ-

ent) are grouped in one cluster in the training mode even

though classifying the patch clouds based on cloud-top

temperatures can differentiate many clouds. Note that

in the PERSIANN-CCS algorithm, the PMM is applied

to the T–R pixel pairs (temperature pixels and the cor-

responding rain-rate pixels) of all of the patches within

the cluster to obtain the T–R relationship. Thus, in the

PERSIANN-CCS algorithm, all patches in the cluster

impact the creation of the T–R of the clusters, and it is

not necessary to attain the T–R for each patch. How-

ever, in our approach, by using the MM technique, the

T–R of all of the patches is obtained, and the effect

of improper patches is reduced by using medium

merging.

Because the T–R relationship resulting from applying

the MM method does not cover the entire range of

temperature values, a SCF procedure is then applied to

fit the T–R samples to cover the range of temperatures.

That is, a 10th-order polynomial curve fitting and a 5th-

order exponential curve fitting (Hong et al. 2004) are

computed for the MM T–R points (black and gray lines

in Fig. 4, respectively), and the curve with the smaller

mean squared error (MSE) against the MM T–R points

is selected. Figure 4 depicts how the MM and SCF

methods provide a T–R relationship for a cluster. The

dashed lines show the T–R relationship for the patches

belonging to the cluster. First, the MM approach is ap-

plied to the T–R of the patches to merge the rain rates to

one value for each temperature. The MM is carried by

computing the median of the patch rain rate for tem-

peratures having at least one corresponding patch rain

rate for each cluster. These T–R-merged values are

shown as filled dot marks in Fig. 4. Two types of curve

fitting [polynomial (black) and exponential (gray)] are

applied to the T–R-merged samples to cover all of the

temperatures between 200 and 255 K. The SCF selects

the curve-fitting approach that has a smaller MSE (fit-

ting error) to the median samples. In this example, the

SCF selects the polynomial curve fitting because it has a

smaller MSE value.

FIG. 3. Clusters in the training and testing modes.

FIG. 4. Temperature–rain-rate relationship of patches within

a cluster (dashed lines) and median merging samples (filled dots)

along with curve-fitting techniques (thick black, gray lines) for the

cluster.
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3. Verification of results

The study region encompasses 308–388N, 958–858W of

the United States, which covers parts of Louisiana,

Arkansas, Kansas, Tennessee, Mississippi, and Alabama.

The winter (January and February), spring (March–May),

summer (June–and August), and fall (September–

November) periods of 2008 are used for testing (approx-

imately 16 000 images of the area of study are utilized for

rainfall estimation in the testing mode). To train the

SOM and also to obtain the T–R maps for each cluster,

we use 1000 patches (as training data) that are randomly

selected from 1 month before the respective testing

month (e.g., for computing rainfall for the month of July

1000 patch samples are selected from the month of June

to update and train the SOM and T–R maps). Note that

because the training samples are chosen randomly from

1 month before the respective testing month, the month

of December 2007 is not considered as part of the 2008

winter season testing (January and February). The IR

data are obtained from GOES-12 (channel 4) with 30-

min interval images covering the entire area of study. It

also has a nominal spatial resolution of 4 km 3 4 km.

The Next-Generation Weather Radar (NEXRAD)

stage IV precipitation products, which are available on

an hourly and also a daily basis at spatial resolutions of

4 km 3 4 km, are used for training and validation (Lin

and Mitchell 2005).

Figure 5 shows an example of the hourly precipitation

estimate (1 out of 16 000 estimates) at 1300 UTC 4

February 2008 (the precipitation estimates are typically

derived every 30 min; however, for validating the results

against NEXRAD stage IV, we accumulate them in

hourly estimates). The mCCS-WMS algorithm estimate

is shown in Fig. 5a. The corresponding values of the

implemented PERSIANN-CCS (hereafter mCCS) and

NEXRAD stage IV data are shown in Figs. 5b,c,

respectively. By comparing the two algorithms to

NEXRAD’s stage IV, it is clearly seen that the mCCS-

WMS algorithm provides better rain area detection than

the mCCS.

A set of four commonly used verification metrics,

which includes the probability of detection (POD), the

false-alarm ratio (FAR), equitable threat score (ETS),

and area bias ratio (Ebert et al. 2007), are utilized to

evaluate the algorithms against the NEXRAD stage

IV product at rainfall thresholds of 0.01, 0.1, 1, 2, 5, 15,

and 25 mm. The area bias is the ratio of the estimated-

to-observed rain areas. An area bias value of 1 indicates

that the estimation and observation have identical area

coverage.

Figure 6 shows the FAR and POD verification met-

rics of the daily estimates for the mCCS, implemented

PERSIANN-CCS using the MM technique with an

exponential curve fitting (mCCS-MM), implemented

PERSIANN-CCS using MM and SCF methods (mCCS-

MMSCF), and mCCS-WMS methods in all seasons of

2008 against the NEXRAD stage IV product at different

rainfall thresholds. Except at low rainfall thresholds, the

mCCS-MM method has high FAR compared to other

algorithms in the seasons. In the spring and summer, the

mCCS-WMS, mCCS-MMSCF, and mCCS methods

have almost the same FAR performance. In the winter

(Fig. 6a), the FAR resulting from the mCCS-WMS

method is almost the lowest at large rainfall thresholds

(about 10% less than that of the mCCS). Although the

mCCS has less FAR in the fall than that of the mCCS-

WMS and mCCS-SCFMM, the POD of the mCCS is

significantly low at all threshold levels. Figure 6 also

shows that the mCCS-WMS and mCCS-MMSCF meth-

ods have larger PODs than that of the mCCS almost at

FIG. 5. Estimated hourly rainfall estimates ending at 1300 UTC

at the threshold of 1 mm h21 on 4 Feb 2008: (a) PERSIANN-CCS

WMS, (b) PERSIANN-CCS, and (c) NEXRAD stage IV.
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all threshold levels in all seasons. In the winter, the en-

hanced algorithm (mCCS-WMS) has around 10%–40%

POD improvement compared to the mCCS at medium

and high rainfall threshold levels. In the spring, the POD

of the mCCS-WMS is slightly more at medium rainfall

thresholds, and almost similar at other threshold levels.

In the summer, the POD percentage improvement ob-

tained by the mCCS-WMS method is around 10% com-

pared to the mCCS at most of the rainfall thresholds. And,

in the fall, the mCCS-WMS and mCCS-MMSCF have

around 30% POD improvement compared to the mCCS

at medium and high rainfall thresholds. Furthermore,

although the mCCS-MM method provides larger POD

almost in all seasons, its high FAR provides poor per-

formance in total.

Based on Fig. 6, it can be inferred that the large FAR

difference between the mCCS-MM and other algo-

rithms shows that in many cases, the exponential curve

fitting does not match to the merged T–R resulting from

applying the MM technique. In fact, it creates more fit-

ting error [e.g., we see in Fig. 4 that the green line rep-

resenting the exponential curve fitting does not match to

FIG. 6. FAR and POD validation results for 2008 (daily estimates): (a),(b) winter, (c),(d) spring, (e),(f) summer, and

(g),(h) fall.
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the blue samples (T–R-merged sample) and provides

more fitting error]. Therefore, it can be inferred that in

most cases, the polynomial curve fitting is selected by the

SCF method in the mCCS-WMS and mCCS-MMSCF

algorithms, and the SCF approach improves precipita-

tion estimation when applied to the MM T–R samples.

In addition, because the mCCS-WMS, mCCS-MMSCF,

and mCCS-MM algorithms use the MM method and

provide better POD performance compared to the tra-

ditional mCCS at medium and high rainfall thresholds, it

can be inferred that the MM technique can be an ef-

fective method to improve the POD performance.

Figure 7 shows the ETS and area bias performance of

the algorithms for the daily estimates for all seasons of

2008. By comparing the mCCS-WMS (and also mCCS-

MMSCF) to the mCCS method, we see more improve-

ment in the winter and the fall. As Fig. 7a shows, the

mCCS-WMS has about 2%–20% greater ETS perfor-

mance than that of the mCCS in the winter. The ETS of

the mCCS-MMSCF algorithm also outperforms that of

the mCCS in most of the rainfall range with approxi-

mately 16% improvement at some rainfall thresholds.

Furthermore, at medium and large rainfall thresholds,

the ETS of the mCCS-WMS is greater than that of the

mCCS-MMSCF by approximately 4%. Figure 7b de-

picts that, at low rainfall thresholds, all algorithms, ex-

cept the mCCS-MM, have an area bias values higher

than 1. However, at medium and large thresholds, the

area bias of the mCCS-MM increases abruptly due to

increasing the FAR. Furthermore, for these thresholds,

the mCCS underestimates and other algorithms over-

estimate precipitation. In addition, the area bias of the

mCCS-WMS is almost less than those obtained from

other methods at medium and larger threshold levels.

In the spring (Figs. 7c,d), except for the mCCS-MM,

other algorithms almost have the same ETS and also

the same area bias performance. In the summer (Figs.

7e,f), at low rainfall thresholds, nearly all algorithms

have the same ETS performance. However, at medium

and high thresholds, the mCCS-WMS provides larger

ETS than others with a maximum of 5% more than

that of the mCCS. In addition, all algorithms have an

area bias higher than 1, where the mCCS has the less

area bias at all threshold levels. In the fall (Figs. 7g,h),

the mCCS-WMS algorithm has superior ETS and also

less area bias than others. By comparing the mCCS-

WMS with the mCCS, the ETS percentage improve-

ment is approximately 10% at medium and high rainfall

thresholds in the fall. Furthermore, the mCCS-WMS

has somewhat greater ETS performance than that of

the mCCS-MMSCF at some threshold levels (ap-

proximately 3% at a threshold of 5 mm day21) in the

fall.

Figure 8 depicts the ETS and area bias performance of

the algorithms for the hourly estimates for all seasons of

2008. It depicts that both the mCCS-WMS and mCCS-

MMSCF have greater ETS performance in the winter

and the fall than that of the mCCS for the hourly esti-

mates. The percentage of ETS improvement is approx-

imately 10% in the winter and 8% in the fall at some

threshold levels. The area bias is also improved by these

algorithms (mCCS-WMS and mCCS-MMSCF) at most

threshold levels in the winter and fall. However, by

comparing the mCCS-WMS and mCCS-MMSCF to the

mCCS in the spring and the summer, it is seen that no

significant improvement is gained by the mCCS-WMS

and mCCS-MMSCF. Note that both the mCCS-WMS

and mCCS-MMSCF have almost the same hourly ETS

performance. However, the mCCS-WMS has better

area bias overall.

Based on Figs. 6–8, it can be inferred that most of the

ETS improvement is due to extreme improvement in

POD at medium and large rainfall thresholds for the

mCCS-WMS, mCCS-MMSCF, and mCCS-MM algo-

rithms. Furthermore, because the traditional mCCS has

less ETS than that of the mCCS-WMS and mCCS-

MMSCF algorithms at all threshold levels in the daily

and hourly estimates for the winter and the fall seasons,

it can be concluded that applying the MM and SCF is

more effective in these seasons in order to filter out the

improper patches in the clusters and also decrease the

fitting error (MSE). Figures 7 and 8 also show that the

mCCS-WMS provides better ETS performance than

that of the mCCS-MMSCF in the winter and fall seasons

for the daily estimates and also almost less area bias in

the daily and hourly estimates in all seasons. It can be

concluded that the wavelet features along with feature

selection not only provide effective and useful infor-

mation from cloud-top temperature, but also decrease

the dimensionality and complexity and most probably

increase the processing speed.

4. Conclusions and summary

Two main improvements to the PERSIANN-CCS

algorithm are incorporated to enhance precipitation

estimation. The first one is the use of wavelet features

and feature selection (WFS) methods to provide proper

and effective features to group and classify cloud patches.

The second one is the improvement of the T–R for each

cluster (group) using median merging (MM) and selected

curve-fitting (SCF) techniques. The wavelet features pro-

vide more information about the texture of cloud patches,

specifically information of the different details of variation

from cloud-top temperatures. In addition to incorporating

the wavelet features, a feature selection technique is used
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to effectively find the best similarity measures (features)

to group the clouds and reduce redundant and/or irrele-

vant features. The MM method, which computes the

median rain rate at each temperature of the patch T–R

values, is also used to diminish the impact of the improper

patches, which may result of imperfect classification and

features extraction, as well as a lack of enough infor-

mation of the cloud or other factors. In addition, a selected

curve-fitting (SCF) method is implemented to fit the T–R

samples resulted from applying the MM method. The SCF

technique chooses either a polynomial curve fitting or an

exponential curve fitting based on their MSE values.

FIG. 7. As in Fig. 6, but for ETS and area bias (BIAS) validation results for 2008 daily estimates.
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Overall, the use of the WFS, MM, and SCF ap-

proaches can enhance the PERSIANN-CCS algo-

rithm and improve precipitation estimation. The results

show that the enhanced algorithm (mCCS-WMS), as

a result of incorporating the above methods (WFS,

MM, and SCF), provides approximately 20% ETS

improvement for the daily (10% for hourly) esti-

mate in the winter, 10% for the daily (8% for hourly)

estimates in the fall, and at most 5% for the daily es-

timates in the summer at some rainfall thresholds. In

the spring, no significant improvement is obtained.

The area bias is improved at almost all rainfall thresh-

olds for the daily and hourly estimates in the winter

and fall. However, the area bias in the summer is

greater than that of the implemented PERSIANN-CCS

algorithm.

FIG. 8. As in Fig. 6, but for ETS and area bias (BIAS) validation results for 2008 hourly estimates.
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