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INTRODUCTION 

 
The quality of water in coastal areas is a vital component to 

human activities as well as the natural ecosystem. Coastal areas 
are essential habitats for many species including threatened and 
endangered species. Population growth, however, along with 
increased urbanization in desirable coastal areas have resulted in 
increasing the amount of contaminants deposited in the ocean 
through the drainage system. This has negative impacts on 
coastal ecosystems, human beings, tourism and other economic 
activities. In this respect, water quality of the coastal region in 
California is extremely important since 80 percent of the state’s 
population resides along the state’s coastline and millions of 
tourists and local residents visit the coastal area in California 
each year, which demonstrates the importance of its coastal area 
to the economy and the culture of the state. Therefore, 
maintaining and monitoring water quality of these areas are a 
major challenge to the state of California because wrong 
decisions on water quality will greatly affect the health of coastal 
communities and their economy, respectively (SWRCB, 2001). 
To address this problem the state set up the water quality standard 
based on indicator bacteria concentration since bacterial 
concentration in beaches or surf zone is obviously the main 
concern to the State of California and its coastal water quality 
agencies or managers responsible for protecting beach-goers 
from exposure to waterborne disease.  

The primary objective of this study is developing a modeling 
method to predict the level of water quality, especially bacterial 
concentration. There have been several efforts to develop the 
modeling method to forecast bacterial concentration (Auer and 
Niehaus, 1993; Sperling 1999; Steets and Holden, 2003; Reeves 
et al. 2004). Among those studies, two studies focused on 
Southern California. One, by Steets and Holden (2003), 
developed a mathematical model to predict fecal coliform 

concentration in the Arroyo Burro Lagoon in Santa Barbara, 
California and its adjacent coastline, Hendry’s Beach. The other, 
by Reeves et al. (2004), developed the simple theoretical model 
to estimate the loading of fecal indicator bacteria in storm runoff 
originated from the sediment erosion in Talbert Watershed. Both 
studies adopted mathematical models using several parameters. 
In this study, however, we used an approach with an artificial 
neural network (ANN) to predict bacterial concentration. Many 
studies have already adopted ANNs to manage the water quality 
(Brion and Lingireddy 1999; Aguilera et al. 2001; Lou and Nakai, 
2001; Cheroutre-Vialette and Lebert 2002; Ha and Stenstrom, 
2003). Most of those studies used typical ANNs which have one 
or more hidden layers between input layer and output layer. This 
Study, however, adopted a unique ANNs, called Self-Organizing 
Linear Output (SOLO) which has classification and mapping 
layers instead of the hidden layers of typical ANNs (Hsu et al., 
2002). 

 
METHODS 

 
Site Description 

Both Newport Beach and Newport Bay areas are very popular 
places in Southern California. Newport Bay is the second largest 
estuarine embayment in Southern California. Pollution of the bay 
is largely dependent on the contaminants from the San Diego 
Creek Watershed, upper basin watershed, which covers 112.2 
square miles in the center of Orange County, California (Kamer, 
2002). As reported by Horne (2003), excess nitrate in San Diego 
Creek was likely the cause of eutrophication for the Newport Bay 
Estuary in 1993. The reason why the Newport Bay water quality 
situation in the 80’s was worse than that of the 70’s was because 
of the development of the city of Irvine, being the main part of  
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In this study, one of the artificial neural networks, Self-Organizing Linear Output (SOLO), was used to predict 
levels of indicator bacteria at Newport Bay in Newport, Beach, California, USA. The approach over-estimated 
several observations which showed extraordinary low concentrations compared to others. Average of observations 
was 6351 CFU/100mL and that of error value for model validations was only 176 CFU/100mL, about 3% of 
observation average without few points which showed extraordinary low concentrations. The results of this study 
showed that the approach was very effective for predicting concentrations of indicator bacteria. The approach was 
carried out for monthly average prediction because of limited dataset. The study could be extended for finer time 
scale prediction, such as weekly or daily prediction, when more measurements are available. 
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Figure 1 San Diego Creek Watershed and Study Area 

 
San Diego Creek Watershed. San Diego Creek, the main tributary 
of San Diego Creek Watershed, is the primary freshwater input to 
Upper Newport Bay and also the repository for agricultural and 
urban drainage throughout the watershed. For example, more than 
95% of freshwater which flows into the Newport Bay comes 
from San Diego Creek. San Diego Creek is also the main 
contributor for the most pollutants from the San Diego Creek 
Watershed to Newport Bay; 95% of dissolved metals, 
approximately 94% of sediment (Strauss, 2002). Therefore, the 
present study focused on San Diego Creek and its upper streams 
flow. Figure 1 shows the study area. Triangles are rainfall gages; 
dot is the water quality monitoring point; and dark area is the 
study area. The effect of Santa Ana Delhi channel to the water 
qualities on Newport Bay is minor although it covers a Northwest 
part of San Diego Creek Watershed, so the area covered by Santa 
Ana Delhi was not considered for this study. 
 
Data 

Orange County Watershed and Coastal Resources Division 
provided dataset such as streamflow, precipitation, and water 
quality data. Water quality samples were taken at least once a 
week from the Station #226 (San Diego Creek at Campus Dr.) 
where streamflow is also recorded regularly. Precipitation data 
were recorded in real-time from five different gages as shown in 
Figure 1. The average precipitation was calculated using the 
thiessen polygon method. The Ocean Water Protection Program 
operated by Orange County Health Care Agency provided data 
for concentrations of total coliform (TC), one of the major 
indicator bacterial. Indicator bacteria samples were taken from 
the sampling station CNBCD, the same location as station #226. 

 
Self-Organizing Linear Output 

ANNs are the computational tool which mimics the biological 
processes of the human brain. Since the 1950’s, many researchers 
have devoted themselves to study ANNs and multilayer feed-
forward networks have been found to have the best performance 
with regard to input-output function among that research. SOLO 
is the one of the multivariate ANNs procedure with a 
classification and a mapping layer (Hsu et al., 2002). SOLO was 
designed for rapid, precise, and inexpensive estimation of 
network structure/parameters and system outputs. Moreover, 
SOLO provides features that facilitate insight into the underlying 
processes, thereby extending its usefulness beyond forecast 
applications. Figure 2 shows the structure of SOLO network. 
Input layer consists of n0 neural units connected to all units of 
the classification and mapping layers which categorizes the input 
variables into a certain number of characteristic groups, so each 
group could represent input data patterns and route these  

 
Figure 2 The architecture of a SOLO network 

 
characterized input variables for output prediction; both layers 
are n1 x n1 matrixes. The classification layer uses a self- 
organizing feature map (SOFM) to classify the input information 
and mapping layer uses multivariate linear regression to map the 
inputs into the outputs (Hsu et al. 2002). 

 
Experimental Setup 

Providing effective input variables might be the most important 
task for modeling approaches. The study, therefore, focused on 
determining effective input variables, which could lead to 
improve model performance, at the beginning stage of ANN 
development. Several factors, turbidity, suspended solid (SS), 
precipitation, nutrient (N, P), and pH, which might affect 
bacterial concentrations were evaluated for input variable 
selection. Precipitation and SS showed the most highly relevant 
to the simulation results, so that those two parameters were used 
in the further experiment.  

 
Model Scenario with Input – Output Pairs 

Every combination of single or multiple input variables with 
different numbers of previous events and different node size from 
2x2 to 7x7 was tested and each scenario contains previous 
indicator bacterial concentrations. The first 36 months data were 
used for training the model and the last 18 months data were used 
for verifying the model. Six months data were used for both 
training and verifying the model because of lack of dataset. 
Following input-output equations show each scenario; examples 
for single input variable (rainfall or SS) and for combination of 
input variables (rainfall and SS). 
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 Where  C : concentration for indicator bacteria, TC, 
 Ii : input variable, rainfall or SS 
 t : time (month) 
 
 
 

Rain gage 

Sampling station 
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RESULTS and DISCUSSION 
 

Input Variable: Precipitation 
Rainfall events are the one of the most important factors for 

bacterial concentration because rainfall runoff washes all 
pollutants out to the water bodies from non-point sources. On the 
other hand, rainfall events could also dilute the bacterial 
concentrations because of its large water volume. In this study 
area, rainfall events tend to increase indicator bacterial 
concentrations. For example, there is a report which showed the 
effect of rainfall on the bacterial concentrations in Southern 
California. Noble et al. (2003) reported bacterial concentration 
changes of three different seasons along the Southern California 
Coastline. The concentration of indicator bacteria in the coastal 
zones is 5 to 40 times higher during the storm event than those 
during any other seasons in the same year. Another report showed 
the strong relationship between rainfall events and bacterial 
concentrations in a different area, Stevenson Creek Watershed in 
Florida. Whitlock et al. (2002) reported that the changes of 
bacterial concentrations showed the same patterns with those of 
rainfall events in Stevenson Creek Watershed. Figure 3 (a) and 
(c) show average rainfall for the study area and average of TC 
concentrations measured from the San Diego Creek at Campus 
Dr. station. As shown in the figure, there is a strong positive 
relationship between rainfall and TC concentration. Bacterial 
concentrations might be affected by other factors during dry 
season, so the study needed to have other forcing data to cover 
dry season.  

 
Input Variable: Suspended Solids (SS) 

SS usually indicates particles between 0.1mm and 2 mm in the 
liquid sample. SS is also a possible candidate as an input variable 
for modeling approach to predict bacterial concentrations because 
bacteria could attach to sediment particles. For instance, Auer and 
Niehaus (1993) reported that 90 ~96% of fecal coliform were 
associated with particles between 0.45 and 10 and Steets et al. 
(2003) reported that 90% of fecal coliform in streams and bays 
are associated with sediments. Kimberly et al. (2005) also 
reported that fecal coliform in sediments could live longer than 
those in water. Figure 3 (b) and (c) show averages of SS and TC 
concentrations collected at the sampling station at Campus Dr. 
Changes of particles also showed strong relationship with those 
of bacteria. Changes of SS also explained wash-out effects with  

 

 
Figure 3 Monthly Average Data 
(a) Average Rainfall in study area 
(b) SS in San Diego Creek at Campus Dr. Station  
(c) TC concentrations in San Diego Creek at Campus Dr. Station 

 
Figure 4 Calibration Result for TC Concentration prediction 
with Rainfall as Input Variable and RMSE for all calibration 
cases 
a) One step previous rainfall data as input variable  
b) Two steps previous rainfall data as input variable 
c) Three steps previous rainfall data as input variable 
d) RMSE for all cases 

 
the first rainfall. SS concentrations didn’t show proportional 
relationship with amount of rainfall because pollutants were 
usually washed out with the first rainfall event, so concentrations 
of pollutants tend to be decreased during following rainfall events. 
Changes of SS for the study area showed this fact well.  

 
Model Calibration 

Figure 4 a), b), and c) show calibration results for predicting 
TC concentrations from one of model scenarios, single input 
variable (rainfall). X axis represents time, y axis  TC 
concentration, line with diamond symbol  observations, and 
other lines and shapes  simulation results with different node 
sizes. Figure d) shows the root mean squared error (RMSE) for 
all simulations; x axis  each scenario, y axis  RMSE values. 
Calibration results showed that the model performance depended 
on how many previous data was considered as input variables. 
The more previous data, the better simulation results. The 
scenario with one step previous rainfall data as input variable 
showed several points which over- or under-estimated to the 
observations (circles or ovals in Figure 4 a)) while other twoinput 
scenarios had only a few under-estimations. The node size did not 
affect model performance when rainfall was the only input. 
Figure 4 d) shows all calibration results in terms of error value, 
RMSE. As shown in the figure, the most complicated input 
scenario, combined parameters - rainfall and SS, three previous 
events of input variables, and 7x7 nodes, had the best result and 
simpler one, one time previous rainfall data with 7x7 nodes, the 
worst. There is no significant difference among each node size 
since each scenario had own node size for the best result. 
However, bigger node sizes, 6x6 and 7x7, had slightly better 
results than other node sizes in most cases. Overall, the more 
input scenario with bigger node size had better performance for 
calibration processes. 
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Figure 5 Validation Result for TC Concentration prediction 
with Rainfall as Input Variable and RMSE for all validation 
cases 
a) One step previous rainfall data as input variable  
b) Two steps previous rainfall data as input variable 
c) Three steps previous rainfall data as input variable 
d) RMSE for all cases 
 

Model Validation 
Figure 5 a), b), and c) show validation results for TC  

concentration predictions from the scenario which rainfall was 
the only input. The best performance was shown with one step 
previous rainfall data, unlikely the most complicated case showed 
the best results for calibration process. The scenario with one step 
previous rainfall data and 2x2 node size as well as 4x4 node size 
showed two under-estimations and one over-estimation (circle 
and oval in Figure 5 a)), but others followed observations well. 
Validations with two steps previous rainfall data and three steps 
previous rainfall data captured observations well at the early parts 
of simulations, but had over-estimations for the later parts (ovals 
in Figure 5 b) and c)). Figure 5 d) shows the changes of RMSE 
for validations with all scenarios. In terms of objective function, 
validation results showed different performance dependent on 
input scenarios (rectangular in Figure 6 d)). Estimations with 
rainfall as single input variable had better results than those with 
other cases in general, although the best result was shown in the 
scenario with multiple input variables, rainfall and SS, one step 
previous input data and node size 5x5. The average of error value 
for validation processes was 3041 CFU/100mL and the average 
of observation was 4990 CFU/100mL, so model performance for 
validation was poor if considering only error value. Several 
extraordinary low points of observations, which concentrations 
showed less than 1500 CFU/100mL, brought this poor estimation. 
Without those extraordinary low points, the average of 
observations was 6351 CFU/100mL and that of error value was 
only 176 CFU/100mL which is about 3% of observations average.  

Overall, Rainfall and SS were the most important factors to 
predict bacterial concentrations using the SOLO approach. For 
the calibration, the more input variables, the better predictions 
and the node size didn’t affect model performance. For the 

validation, model performance had slightly different result 
dependent on node size as well as input variables. The best result 
was shown in the scenario with multiple input variable, rainfall 
and SS, one step previous input data and node size 5x5 in terms 
of objective function.  

 
CONCLUSION 

The study focused on a SOLO approach to predict TC, one of 
the major indicator bacteria. Observation data had few points 
which were relatively lower than others and SOLO estimations 
couldn’t capture those lower peaks. Although SOLO missed 
those lower concentrations of observations, SOLO seemed to 
have a predictable aptitude for high levels of concentrations. This 
fact is very important since high levels of bacterial concentrations 
are more critical regarding water quality issues. In this respect, 
the SOLO approach could be considered as a promising method 
to predict bacterial concentrations in beach areas. Beach pollution 
has already become a serious problem in the State of California 
and has created events that have affected the state economy as 
well as the culture of coastal areas. The state regulates the quality 
of recreational use water based on indicator bacteria, but the 
system could not give the information for the conditions of water 
quality in a timely manner. A modeling approach may be the one 
of options to use along with the current monitoring system since 
now- or fore-casting events could be possible. The study showed 
the possibility to use SOLO as a prediction tool for the bacterial 
concentrations. However, the study was limited to monthly event 
predictions because of the lack of dataset, so further studies for 
finer time scale prediction, such as weekly or daily changes of 
indicator bacterial concentration, as well as finding more 
variables which could produce better model performance are 
required. 
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