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ABSTRACT

Reliable precipitation measurement is a crucial component in hydrologic studies. Although satellite-based

observation is able to provide spatial and temporal distribution of precipitation, the measurements tend to

show systematic bias. This paper introduces a grid-based precipitation merging procedure in which satellite

estimates from the Precipitation Estimation from Remotely Sensed Information using Artificial Neural

Networks–Cloud Classification System (PERSIANN–CCS) are adjusted based on the Climate Prediction

Center (CPC) daily rain gauge analysis. To remove the bias, the hourly CCS estimates were spatially and

temporally accumulated to the daily 18 3 18 scale, the resolution of CPC rain gauge analysis. The daily CCS

bias was then downscaled to the hourly temporal scale to correct hourly CCS estimates. The bias corrected

CCS estimates are called the adjusted CCS (CCSA) product. With the adjustment from the gauge mea-

surement, CCSA data have been generated to provide more reliable high temporal/spatial-resolution pre-

cipitation estimates. In the case study, the CCSA precipitation estimates from the proposed approach are

compared against ground-based measurements in high-density gauge networks located in the southwestern

United States.

1. Introduction

Accurate estimation of precipitation is crucial to a range

of hydrologic and climatic applications. These applica-

tions vary from flood forecasting to climatological studies

of droughts. At present, there are several precipitation

measurement systems, including point measurements at

gauge and spatial measurements from radar and satellite.

Although gauges are considered to be the only source of

physical measurement, the lack of temporal and spatial

sampling hinders the relevance of such measurement. To

overcome such a problem, recent developments in re-

mote sensing technology (satellite and radar) provide

potential alternatives for high spatial/temporal estimates

of precipitation, especially in semiarid regions where

ground measurements are lacking or sparse at best. Al-

though weather radar provides precipitation estimates at

high spatial/temporal resolution, its performance does

not account for evaporation loss and is grossly inade-

quate over the mountainous regions as a result of beam

blockage, especially in the southwestern United States

where precipitation contributes to most of the water

supply.

Advancement in satellite information technology has

grown tremendously in the last two decades. These ad-

vances triggered the atmospheric community and, to

some extent, the hydrologic community to develop al-

gorithms aimed at retrieving precipitation data from

cloud information. Although satellite precipitation has
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been widely used in meteorological models, because of

its large-scale approach, especially in the area of limited

access to ground-based measurements, the hydrologic

community is also interested in using satellite precipi-

tation data for both research and application purposes.

The National Weather Service (NWS), for example, is

using satellite data in an effort to improve flash-flood

watches and warnings and heavy precipitation forecasts

(Vicente et al. 1998).

The approach of estimating precipitation amounts

from satellite imagery infers the rate of precipitation from

the characteristics of clouds in infrared, visible, and micro-

wave satellite images. Such an approach offers some sig-

nificant advantages compared to rain gauge and radar

estimates. Satellite data provide uniform spatial cover-

age, whereas the poor spatial resolution of rain gauge data

makes it difficult to accurately represent the spatial vari-

ability of precipitation fields. Furthermore, satellites offer

excellent coverage over mountainous areas compared to

radar observations. The Tropical Rainfall Measuring

Mission (TRMM) is a newer generation of satellite pre-

cipitation estimates that introduces the precipitation radar

instrument (active microwave) and the TRMM micro-

wave imager [passive microwave (PMW)] for rainfall es-

timation (Kummerow et al. 1998).

For the spatial and temporal consideration, geosyn-

chronous orbit (GEO) satellites can provide less-than-

hourly samples and are frequently used to monitor cloud

motion and provide information that indirectly infers

rainfall at the ground surface. This gives rise to the un-

certainty of retrieval. On the other hand, PMW sensors

carried by low earth orbit (LEO) satellites can sense

rainy clouds more directly. However, the hind side is

that each LEO satellite provides limited temporal

samples and lower spatial coverage. To use the strengths

and compensate the weaknesses of those PMW and IR

sensors, algorithms were developed to jointly use GEO

and LEO satellite information. The results demonstrated

the great potential of improving surface rainfall retrieval

(Adler et al. 1993; Ba and Gruber 2001; Bellerby et al.

2000; Hong et al. 2004; Hsu et al. 1997, 1999; Huffman

1997; Huffman et al. 2001; Joyce et al. 2004; Levizzani

et al. 2007; Marzano et al. 2004; Sorooshian et al. 2000;

Tapiador et al. 2004; Turk et al. 2000; Vicente et al. 1998;

Xie and Arkin 1997).

Because blending approaches using LEO and GEO

satellite information may provide potential improve-

ment than using one single source, without referencing

to the ground measurement, those precipitation estimates

may be biased from surface rainfall, either regionally or

temporally. Additional measurement from gauges helps

to reduce bias from satellite measurement. Although

improvement has been made from merging satellite and

gauge measurements at monthly scale or even for pro-

viding adjustment at daily scale based on global monthly

gauge measurement (Xie and Arkin 1997; Huffman

et al. 2001), a finescale precipitation measurement at

subdaily scale is needed for many hydrologic applica-

tions. We intend to address this issue by downscaling

daily gauge measurement from daily 0.258 resolution to

subdaily 0.048 scale using hourly precipitation estima-

tion from multiple satellites.

In this study, given the challenge of improving the

reliability of high-resolution, large-extent rainfall maps

based on satellite observation over land, we introduce

a grid-based merging procedure in which satellite esti-

mates from the Precipitation Estimation from Remotely

Sensed Information using Artificial Neural Networks–

Cloud Classification System (PERSIANN–CCS) are in-

tegrated with a grid-based ground measurement source

known as the Climate Prediction Center (CPC) daily rain

gauge analysis to produce a satellite–gauge bias-adjusted

precipitation product called PERSIANN–CCSA (CCSA).

Multiple years of over-land precipitation data were gen-

erated from 2001 until 2006. These data can potentially be

used as a forcing variable to the hydrologic modeling,

studying climate variation through land cover changes and

supporting water resources management and decision

making. These precipitation products cover from 21358 to

2658 longitude, and 108–508 latitude at 0.048 spatial reso-

lution and hourly temporal resolution. The resulting

rainfall estimates from the CCSA are compared and vali-

dated against ground-based rainfall observations over

several locations in the southwestern United States.

2. Precipitation measurement

Variability of rainfall has been acknowledged as a

reason for the uncertainties in hydrologic applications

(Droegemeier et al. 2000). This inherent problem re-

quires new methodologies to improve the reliability of

the current precipitation products by combining pre-

cipitation information from different sources. Conven-

tional ground-based rain gauges are the most common

rain sensors in use that directly measure precipitation

falling on the ground, but they are not able to picture the

spatial pattern of rainfall (Huff 1970). Another precip-

itation measurement system is the weather radar that is

based on converting radar reflectivity Z to rain rate R

through the Z–R relationship and provides precipitation

estimates at high spatial/temporal resolution (Marshall

et al. 1948; Battan 1973; Morin et all. 2005). The third

potentially useful measurement system is the satellite

precipitation estimates. It is based upon the analysis of

clouds by combining geostationary satellite information

with low orbiting satellites data, resulting in a precipitation
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rate with high spatial/temporal resolution. A brief discus-

sion of the strengths and weaknesses of each precipitation

source is listed below.

Gauge observations sample only some points over the

watershed. To obtain the mean areal precipitation (MAP),

we assume a spatial geometry tied to point rain gauge

observations using, for example, Thiessen polygons, in-

verse distance-squared weighting, or statistical Kriging

techniques. Unfortunately, these estimates of rainfall

could have large errors that might be propagated di-

rectly into streamflow estimation. In addition, rain gauge

measurements are subject to a variety of error sources.

Globally, gauge measurements tend to underestimate

precipitation because of wind-induced turbulence at the

gauge orifice, wetting losses on gauge walls, splashing, and

evaporation (Legates 1993). Monthly biases in rain gauge

measurements are thought to range between 5% and

40%, with the largest errors occurring during snowfall

(Groisman and Easterling 1994). Although Sevruk (1985)

states that systematic gauge errors are the most significant

source of error, representativeness errors can also be

quite large. Representativeness errors occur in two forms.

The first is associated with individual gauges: the amount

of precipitation measured at a gauge may not adequately

represent the rainfall amount in its vicinity because of

localized climatological variations. The second is associ-

ated with the gauge network as a whole: if the network is

not dense enough to completely describe the spatial vari-

ability of a precipitation field, assumptions must be made

about the amount and timing of precipitation in those

locations with no gauge coverage, and these assumptions

can be significant sources of error.

Radar measurements, on the other hand, augment

gauge measurements to provide detailed spatial- and

temporal-resolution measurement of precipitation over

an extensive spatial domain. Surface-based weather ra-

dar emits electromagnetic energy at wavelengths that

are sensitive to the distribution of water droplets in air.

The radar reflectivity, as a function of the measured

reflected power, is related to the precipitation intensity

at ground level in the corresponding region. The latter is

estimated empirically by the so-called Z–R relationship.

Sources of errors in radar measurement, as summarized

by Wilson and Brandes (1979), including the following:

1) the Z–R relationship, which varies from radar to radar

and from storm type to storm type; 2) melting snow,

which reflects much more energy than raindrops and

produces anomalously high returns (brightband); and

(3) that as the height of the radar beam increases, the

difference in precipitation rate between the radar scan

level and the ground becomes greater (i.e., evaporation

difference), in addition to beam blockage by mountains,

which restricts radar observations.

Satellites offer better coverage than radar observa-

tions and gauges, especially in mountainous regions.

Satellite-based rain retrievals either use information

from the visible and infrared spectral channels of GEO

satellites to establish an indirect relationship between

surface rainfall rate and the observed characteristics of

the cloud features, or from passive/active microwave

spectral channels of low orbiting satellites to detect

rainfall rate by their capability of sensing the hydro-

meteor distribution of the clouds. However, samples

from microwave measurements are less frequent (e.g.,

twice a day). Similar to radar, a satellite observes the

cloud thermal radiance instead of directly measuring

rainfall, creating rainfall estimation errors. Although

satellite measurement covers a larger spatial domain

than gauge network, cold nonprecipitating clouds and

warm precipitating clouds are easily miscalculated.

3. Merging satellite and gauge precipitation
observations

a. Data used

Two sources of data are used in this study to produce

biased-corrected satellite precipitation estimates. Satellite-

based rainfall is provided from the Center for Hydrome-

teorology and Remote Sensing, University of California,

Irvine (CHRS UCI), and daily gauge rainfall is available

from the National Oceanic and Atmospheric Adminis-

tration (NOAA)/CPC. These two data sources are de-

scribed next.

1) PERSIANN–CCS RAINFALL DATA

The satellite precipitation product used is entitled

PERSIANN–CCS (Hong et al. 2004). The PERSIANN–

CCS uses computer image processing and pattern rec-

ognition techniques to develop a patch-based cloud

classification that estimates rainfall at higher spatial and

temporal resolution. This algorithm segments the long-

wave infrared cloud image, assigns rainfall distribution

to the patch image, and then calculates pixel rainfall

intensity based on a classification-based artificial neural

network model. The PERSIANN–CCS system produces

hourly estimates at the spatial resolution of 0.048 3 0.048

that can be applied to the basin-scale hydrologic appli-

cations. CCS estimates over the conterminous United

States (CONUS) are provided by CHRS of UCI (avail-

able online at http://hydis8.eng.uci.edu/CCS/).

2) NOAA/CPC DAILY ANALYSIS

The CPC has developed a grid-based quality-controlled

gauge precipitation system that supports climate moni-

toring and applied research. This system was built in
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1997 and has been undergoing continuous development

and improvement since then. This product is used for a

variety of other products, such as the National Centers

for Environmental Prediction (NCEP) regional reanal-

ysis project and the U.S. Drought Forecast System

(Higgins et al. 2000). This dataset consists of daily av-

eraged precipitation rate values (mm day21) at 0.258

latitude/longitude resolution over the United States and

Mexico that use available rain gauge datasets from dif-

ferent agencies. Figure 1 shows an example of the orig-

inal daily PERSIANN–CCS image at 0.048 3 0.048

spatial resolution and the daily reference CPC image at

0.258 3 0.258. (The daily CPC gauge precipitation prod-

uct is available online at http://www.cpc.ncep.noaa.gov/

products/precip/realtime/GIS/retro.shtml.) Additional

information about the CPC analysis product can also be

found at that Web site.

b. The merging methodology

The bias in satellite-based estimates originates from

the fact that satellites remotely measure atmospheric

characteristics and then infer precipitation estimates

through different algorithms. Many researchers have

been investigating this issue since the satellite-based

precipitation estimates were made available in the 1970s

(e.g., Scofield and Oliver 1977; Rosenfeld and Mintz

1988; Morrissey 1991; Smith and Krajewski 1991; Xie

and Arkin 1997; Huffman 1997; Adler et al. 2000;

Gruber et al. 2000; McCollum et al. 2000, 2002; Bowman

et al. 2003; Smith et al. 2006). Bias-adjustment methods

rely either on computing the difference between satellite-

and gauge-based precipitation where gauge-based mea-

surements are available or on a combination of several

satellite-based estimates in regions with no gauges.

Methods using gauge measurements are referred to as

direct-bias estimates and include optimum interpolation

(Gandin 1963; Reynolds and Smith 1994), smart in-

terpolation (Willmott and Matsuura 1995), and CPC

merged analysis of precipitation (Xie and Arkin 1997).

The merging methodology followed in this work is

similar to the approach described in Daley (1991). It is

based on adjusting the differences between the daily

gauge distribution and the satellite rainfall at and near

the grid boxes and the inclusion of the number of gauges

available at each pixel as a confidence; that is, the higher

the number of gauges that exist within a pixel grid, the

more weight is given to that pixel. It needs to be men-

tioned that the CPC gauge product is available at daily

temporal resolution at 0.258 3 0.258 latitude–longitude

resolution; therefore, the algorithm consists of a two-step

process in which the daily adjustment at 0.258 3 0.258 is

carried out first, followed by the hourly adjustment at

0.048 3 0.048 scale. The daily bias is calculated and re-

moved from the satellite daily product on each pixel at

0.258 3 0.258 scale as follows:

Erk
D 5 �

i2V
k

[w
i
(Gi

D � Pi
O(D))]

.
�
i2V

k

w9
i

(1)

where ErD
k is the daily error of pixel k of the satellite-

based rainfall (mm day21), GD is the daily gauge-based

rainfall at pixel k (mm day21), PO(D) is the daily satellite-

based rainfall at pixel k (aggregated from hourly CCS

and in mm day21), and Vk defines the neighborhood

region centered at pixel k (0.258 3 0.258 grid). In this

case, Vk is selected as 3 3 3 neighborhood pixels. Also,

wi is the weighting factor that is a function of gauge

counts of pixel k and the inverse distance from pixel k to

pixel i, which is defined as

w
i
5 w

id
3 w

ig
, (2)

FIG. 1. Example of the daily CCS precipitation image vs the daily CPC.
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where wid is the inverse distance weighting factor from

the center pixel k to pixel i and wig is the gauge density

weighting factor at pixel k. They are defined as

w
id

5
(D2 � d2

i )

(D2 1 d2
i )

and (3)

w
ig

5 f (GC, a, «)

5

0 ���! if (GC , «)

GC/a ���! if (« , GC , a)

1 ���! if (GC . a),

8><
>: (4)

where D is the maximum distance from the center of

pixel k to the center of the outer pixel window (in this case,

a 3 3 3 window); d is the distance from the center pixel i to

the center pixel k, respectively; GC is the gauge count, and

a is the upper threshold of gauge counts (in this study, a is

set to 20); and « is the lower threshold of the number of

gauges accepted within a pixel (here, « is set to 4).

Note that the correction is completed by adjusting

CCS estimates toward the daily CPC gauge product.

This adjustment depends on the gauge counts and pre-

cipitation estimation at the calculation pixel and its

neighborhood pixels. For example, if the calculation

pixel k contains fewer than four gauges, then the weight

wi is assigned as zero; therefore, the daily adjustment

mainly depends on the weighted adjustment of gauge and

CCS difference of its neighborhood pixels [see Eqs. (1)

and (2)]. If all 0.258 pixels in the neighborhood k contain

gauge counts fewer than four, then no adjustment is

given in the pixel k.

After calculating the daily bias for each pixel, it is then

removed from the daily satellite rainfall estimate:

P
j

A(D) 5 P
j

O(D) 1
P

j
O(D)

�
j2L

k

P
j

O(D)

[Erk
(D) 3 n(L

k
)], (5)

where k is an index defined in the CPC gauge product

resolution (0.258 3 0.258), Lk is the coverage of a CPC

product grid, and j is an index for CCS grids at resolution

0.048 3 0.048 inside each CPC 0.258 3 0.258 grid. The grid

j is defined as the subgrid of CPC product grid k, in

which every pixel j is covered by a CPC data product grid

k. Here, PA(D)
j is the adjusted daily rainfall at pixel j

(mm day21), at 0.048 3 0.048 resolution; PO(D)
j is the CCS

daily rainfall at pixel i (mm day21), at 0.048 3 0.048

resolution; and n(Lk) is the number of CCS pixels under

the coverage of a CPC gauge product grid, which in-

cludes about 6 3 6 CCS pixels.

After generating the daily product, the hourly adjusted

rainfall is calculated by multiplying the CCS satellite-

based hourly values at each grid point by the ratio of

the daily adjusted product to the daily original CCS

rainfall:

Pk
A(h) 5 Pk

O(h) 3
Pk

A(D)

Pk
O(D)

, (6)

where h denotes the hourly resolution, D denotes the

daily resolution, A represents the CCSA, and O repre-

sents the original CCS. This hourly adjustment is based

on the assumption that a higher amount of precipitation

holds higher error and vice versa. The process to gen-

erate the CCSA for each hour is shown in Fig. 2.

4. Product evaluation

a. Daily evaluation

The hydrometeorology of the southwestern United

States semiarid region is characterized by intense

thunderstorm episodes during the summer season that

have a major contribution to the yearly total precipita-

tion. The focus of the daily analysis is contained to the

3-month period of July–September (JAS) from 2002 to

2006 in the southwestern United States, where most of

the precipitation occurs during this period (Gochis et al.

2006). We selected two regions (a 18 3 18 box) in Ari-

zona (see Fig. 3a) for the daily analysis. Region 1 was

chosen because it consists of a dense network of 91

gauges that are used in the CPC estimates (see Fig. 3b),

whereas region 2 has only 8 gauges over the 18 3 18 box.

This contrast analysis will show the performance of the

merging process in converging CCS rainfall satellite-

based estimation to CPC ground measurements for high

and low gauge count areas over the southwestern United

States. Figure 4 shows the scatterplots of the daily CCS

and CCSA to the CPC daily analysis over the two regions.

Quantitatively, the accuracy of estimates is evaluated

FIG. 2. The processing steps of adjusting hourly CCS rainfall data

using daily CPC rainfall.
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using the correlation coefficient (R, or Corr), the mean

bias (BIAS), and the root-mean-square error (RMSE):

RMSE 5
1

n
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g
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s
(t)]2
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(7)
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where Pg(t) represents the reference ground measure-

ments, Ps(t) is the satellite estimates (CCS or CCSA) at

time t, Pg and Ps are the mean average of each, and n is

the number of data points.

The scatterplots in Fig. 4 illustrates the improvement

of the satellite estimates after the bias adjustment pro-

cedure, considering the CPC gauge analysis as a refer-

ence. These plots also show a same general trend of

rainfall overestimation from original satellite estimates

in summer seasons as reported by other studies (Yilmaz

et al. 2005). Originally, the CCS overestimates the

rainfall over region 1 (see Fig. 4a), resulting in a corre-

lation coefficient of 0.64, a BIAS of 1.02 mm d21, and an

RMSE of 3.71 mm d21. When the bias adjustment pro-

cedure is applied to the original CCS data (see Fig. 4b),

the overestimation of the new CCSA to the CPC is

decreased, resulting in a higher correlation coefficient of

0.96, and a reduction of the bias and RMSE (0.04 and

0.69 mm d21, respectively). Similar results are observed

for the lower gauge count region (see Figs. 4c,d), in

which the correlation improved from 0.65 to 0.95, the

BIAS reduced from 0.89 to 0.17 mm d21, and the RMSE

reduced from 3.14 to 0.56 mm d21. Results of this daily

cross testing shows that the overestimated bias by sat-

ellite can be tremendously reduced using the bias ad-

justment procedure presented herein when relying on

the CPC gauge analysis as a reference. The time series of

the daily precipitation show an agreement between the

CPC and CCS in terms of detecting rainfall events;

however, a considerable variation in the bias is noticed

along the time series over the two regions. During the

JAS season of 2006, for example (Fig. 5a), a significant

positive bias starts from July over region 1 that con-

tinues to manifest itself with lower magnitude during

August, and becomes slightly negative by the end of

August to the end of September. Similar to region 1,

region 2 (Fig. 5b) shows an overall positive bias during

July and August and then becomes a negative bias during

the 4-day period of 7–10 July and the month of Septem-

ber. The CCSA, however, shows a very good agreement

with the CPC, in which the bias-adjusted procedure was

able to correct for the negative and positive biases al-

ternatively. It is important to carry out this study to a

watershed level and higher temporal resolution to eval-

uate the significance of satellite data for hydrologic ap-

plications in which such resolution is needed.

b. Hourly evaluation

Although the daily CCSA shows improvement over

the daily CPC gauge analysis, it is useful to show the

FIG. 3. Location of the study area in the southwestern United States. (a) The evaluation study locations (regions 1 and 2) and their CPC

gauge distribution. (b) Location of the Walnut Gulch watershed with the ARS high-gauge network distribution.
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effectiveness of the adjustment algorithm at finer spatial

and temporal scale in the following evaluation. The

original and adjusted satellite rainfall estimations de-

scribed in this paper are compared to an independent

rainfall observation dataset. The high-quality hourly

gauge network over Walnut Gulch is used in the eval-

uation. The Walnut Gulch Experimental Watershed is

located in southeastern Arizona (318439N, 1108419W;

Fig. 3b) surrounding the historical town of Tombstone. It

has been used by the U.S. Department of Agriculture

(USDA) as a research facility since the mid-1950s. A

dense network of 88 rain gauges distributed across the

watershed area that covers approximately 150 km2 pro-

vides a good test site to evaluate the CCSA performance,

given that only one gauge is listed in the CPC network

over this watershed. Historical hourly gauge precipitation

of this dense network can be obtained from the Agri-

cultural Research Service (ARS) Web site on a gauge-by-

gauge basis. The watershed mean precipitation is then

calculated by calculating the mean average of the quality-

controlled gauge precipitation within the watershed area.

The mean monthly rainfall totals over the available

period of 5-yr records (2001–05) from satellite and high

gauge network measurements shows that the two sum-

mer months of July and August predominantly record

most of the rainfall from both datasets (Figs. 6a–d). This

figure compares the gauge measurements to the satellite

estimates before and after the adjustment in which CCS

estimates carry a consistent positive total bias all year

long except for the month of September (see Fig. 6d).

FIG. 4. Daily intercomparison of (left) CCS and (right) CCSA against CPC gauge analysis.
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The monthly total bias is defined as the difference be-

tween the satellite mean monthly total and the gauge

network mean monthly total for each month. At the

same time, the CCSA shows a significant monthly total

bias reduction. Furthermore, during the high-rainfall

period of JA, the monthly average bias from CCS is

more than 60 mm month21 for each month, whereas it

has been reduced by 83% (less than 10 mm month21)

when the adjustment procedure is applied (see Fig. 6d).

Given that the JA period dominates the total rainfall

over the southwestern U.S. region, this period has been

chosen for the high-temporal-resolution comparison for

the 6-yr available records. Figure 7 depicts a sequence

of scatterplots of hourly (including nonrainfall events),

3 hourly, 6 hourly, 12 hourly, and daily satellite precip-

itation estimations (before and after adjustment) against

high gauge network measurements over Walnut Gulch.

The hourly comparison shows an overestimation of CCS

resulting in a CORR of 0.48, a BIAS of 0.03, and RMSE

of 0.60. Statistics are consistently improved after the

adjustment procedure is applied to 0.59 for the corre-

lation, 0.00 for the bias, and 0.59 for the RMSE. Hourly

rainfall from satellite measurement is mainly calculated

from one or two image samples in a 1-h period. It may

not represent the rainfall during the 1-h period effec-

tively. Therefore, there is a considerable spread in this

comparison of hourly rainfall by gauge and satellites.

To understand the time lag between the two sources in

capturing the same event, one needs to look at the different

methods in which each source is measuring the rainfall.

Although the gauge network measures rainfall directly at

the ground, the satellite actually estimates the rainfall

amount based on the temperature and texture at the top of

the cloud. The temporal aggregation of 3-, 6-, 12-, and 24-h

comparison represent the same patterns in terms of the

CCSA improvement over the CCS but a limited increase in

terms of the overall correlation between satellite and gauge

measurements. The CCSA compared to the CCS shows

a bias reduction of 92%, 85%, 86%, 84%, and 84% for the

1-, 3-, 6-, and 12-hr and daily resolutions, respectively.

Further evaluation of the quantitative comparison of

the hourly rainfall over Walnut Gulch is carried out by

FIG. 5. Time series of the CCS, CCSA, and CPC over the 18 3 18 box

regions in Arizona for (top) region 1 and (bottom) region 2.

FIG. 6. Mean monthly precipitation over Walnut Gulch watershed for the period 2001–06 from different sources:

(a) CCS estimates, (b) CCSA estimates, (c) gauge network measurements, and (d) monthly total bias.
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calculating the statistics for each JA period of each year

for the 6-yr period of record starting from 2001. Figure 8

summarizes the statistical measures for each period. The

year-to-year comparison shows a reduction in the RMSE

measure for all years except for 2005 after applying the

bias adjustment. The BIAS measurement on the other

hand shows a discerned reduction in the satellite-adjusted

estimates for all years. The year-to-year comparison also

shows a significant variation in the correlation measure.

Plotting the gauge-total rainfall for the JA season (Figs.

8c,d) shows that the correlation between gauge and

satellite data is higher for drier years. The JA period of

2003 and 2004 shows an hourly correlation of statistical

FIG. 7. Scatterplots of (left) CCS and (right) CCSA vs gauge network

at five temporal-scale aggregations.

FIG. 8. Statistics of hourly precipitation for the JA period of each

year from 2001 to 2006: (a) RMSE, (b) BIAS, and (c) CORR (dark

color represents statistics for CCSA and the light color is for CCS),

and (d) total-gauge rainfall for JA periods.
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significance (0.68 and 0.73) between gauge and CCS that

increased about 10% when applying the bias adjustment

procedure. On the other hand, years 2001, 2002, and

2005 show a correlation of less than 0.45 between gauge

and CCS that benefited from a marginal gain (4%, 1%,

and 7%) after applying the bias adjustment. Although

the correlation over the July and August 2006 period is

low (,0.3) for both CCS and CCSA with the gauge

network, both the BIAS and RMSE were significantly

improved. Specifically, the BIAS was reduced by 77%

after applying the adjustment procedure and the RMSE

was reduced by 43%. In fact, after removing the 2006

period from the previous 6-yr analysis, the CCSA hourly

correlation is improved from 0.58 to 0.63, and the daily

correlation is increased from 0.63 to 0.70 for the 5-yr

summer period.

Table 1 shows the evaluation of CCS and CCSA to

detect the nonzero rain event with accumulation of 1-, 6-,

and 12-h time interval at the Walnut Gulch watershed.

Four evaluation statistics were used, including bias score

(BS), probability of detection (POD), false-alarm rate

(FAR), and critical success index (CSI; Jolliffee and

Stephenson 2003). It shows that the adjustment using

CPC daily analysis improves the BS, FAR, and CSI but

reduced the POD. As described in Fig. 6, the CCS

consists of positive bias for around 30%–60%; the ad-

justment from CPC daily analysis helps to reduce the

bias, which also improves the FAR and CSI. It also

shows that the evaluated statistics also improved by

accumulating rainfall with longer duration. Meanwhile,

all the statistics get worse when the threshold level is

increases from 0 to 0.25 mm h21.

c. Diurnal variation of precipitation

Figure 9 shows a comparison of the JA rainy season

over Walnut Gulch during the years 2002, 2004, 2006,

and the 2001–06 average from the gauge network, the

CCS, and the CCSA. Although this figure shows a sim-

ilar pattern of late-afternoon peak from all precipitation

sources, the overestimation of rainfall by the CCS is

clearly observed. The figure also shows that there is a

proportional relationship between the CCS bias and the

average rainfall rate. This can be explained by the ex-

istence of a high bias of the CCS at the higher rainfall

rate. A similar pattern of CCS was reported by Hong

et al. (2007). In contrast, the CCSA shows a significant

decrease in the bias during the high-rainfall rate cycle.

On the other hand, the CCSA results in a negative bias

starting from midnight to the early morning, which co-

incides with the decreasing rainfall-rate cycle. Evaluation

statistics, as shown in Figs. 7, 9, show that improvement

can be made for CCS adjustment from daily to subdaily

scales using daily CPC gauge analysis. As presented in

Fig. 9, the phase of the monsoon season rainfall shows it is

consistent between the gauge and satellite measure-

ments. In addition, it demonstrated that the overestima-

tion from CCS is improved significantly using daily CPC

gauge analysis. It is concluded that using CCS to down-

scale CPC daily analysis to subdaily scale is effective.

5. Summary and conclusions

A procedure for bias removal of satellite rainfall esti-

mation is introduced. This procedure uses precipitation

information from gauge measurement to the spatially and

temporally distributed satellite-based estimation. The

CPC daily analysis precipitation was used as a reference

source for bias correction of the CCS satellite estimates

to produce a satellite bias-adjusted estimate named

CCSA. The hourly bias correction was carried out by

redistributing the daily bias proportionally to the hourly

rainfall estimate. The CCSA and CCS were compared to

the CPC analysis product on daily basis at two selected

locations in the southwestern United States and cross

validated with a high-quality gauge network of precipi-

tation at higher temporal scale over the Walnut Gulch

watershed. The case studies show that the adjusted bias

of CCS rainfall using daily CPC rainfall analysis was

effective in reducing the bias of the PERSIANN-CCS

estimates. On the subdaily scale, improvement in the

RMSE and BIAS reduction is revealed; however, a

limited improvement is noticed in terms of correlation.

TABLE 1. The evaluation statistics of the CCS and CCSA in rain detection under two rain thresholds (0 and 0.25 mm h21), and several

accumulation time durations from 1 to 12 h.

CCS vs gauge CCSA vs gauge

Statistics (mm h21, h) BS POD FAR CSI BIAS POD FAR CSI

R . 0, Dt 5 1 1.60 0.71 0.55 0.37 1.38 0.65 0.52 0.38

R . 0, Dt 5 6 1.37 0.85 0.37 0.56 1.24 0.81 0.34 0.57

R . 0, Dt 5 12 1.24 0.89 0.28 0.66 1.17 0.85 0.26 0.65

R . 0.25, Dt 5 1 1.91 0.64 0.66 0.28 1.30 0.54 0.58 0.30

R . 0.25, Dt 5 6 1.62 0.85 0.47 0.47 1.26 0.76 0.40 0.50

R . 0.25, Dt 5 12 1.52 0.89 0.14 0.54 1.28 0.81 0.36 0.55
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In regions where the number of gauges is limited, the

improvement of rainfall estimates is dependent on the

quality of the satellite estimates themselves.

In conclusion, the CCSA provides an additional source

of precipitation estimates that combines the strengths of

ground measurement and satellite estimates at higher

temporal and spatial distribution and benefits hydrologic

applications, especially in areas where radar coverage is

limited. Testing of the use of CCSA estimates for sub-

daily scale hydrologic applications is ongoing and will be

discussed in the future reports.
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